
I

RADC-TR-77-369, Volume II (of three)
Final Technical Report

0 November 1977

FACTORS IN SOFTWARE QUALITY
Metric Data Collection and Validation

Jim A. McCall
Paul K. Richards
Gene F. Walters

General Electric Company

Approved for public release; distribution unlimited.

DDe
D JAN 23 19T8

ROME AIR DEVELOPMENT CENTER
AN Z

Air Force Systems Command E --U U

Griffiss Air Force Base, New York 13441 D

- r

This report contains a large percentage of machine-produced copy which
is not of the highest printing quality but because of economical considera-
tion, it was determined in the best interest of the government that they be

used in this publication.

This report has been reviewed by the RADC Information Office (01) and is

releasable to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the general public, including foreign nations.

RADC-TR-77-369, Vol II (of three) has been reviewed and approved for
publication.

APPROVED:/

JOSEPH P. CAVANO
Project Engineer

APPROVED: Kg
ALAN R. BARNUM, Assistant Chief
Information Sciences Division

FOR THE COMMANDER: 2 / of

W .OHNP HUSS

Acting Chief, Plans Office

If your aL.dress has changed or if you wish to be removed from the RADC mail-
ing list, cr if the addressee is no longer employed by your organization,
please notify RADC (ISIS) Griffiss AFB NY 1!441. This %ill assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED
SECURITYPMP1SFICATION OF THIS PAGE (When Date Entered)

DOCUMNTATON PGE RAD INSTRUCTIONSIC/LREiR BEOECAPDIGFR

/0 D Rim A. E cf-
oIEa$CTLO UME

Apptroefrpbic raa-Cl elenase; Vldsrtion ulmtd

7S SUPLMNT. NOTES R RNTNMBR*

RADC~~~2 PrjctEgier
Sol fte rd Quality6C-41
Qualit F actors 4N M N D R S 0 FJ C ,T S
Meerics etitC1k0 - - AaWR LI U

Softwvare MeAsurement
I0. CONTROLLIN OFCon E NAM ANDete ADRE S 2. -eceeeat mi ienif h boc n

Rofe soAre Development anseke onte intoS norentedr an 7 ot re

ors. MTRIcs eeN developedifhat wol benrolindeedn Ofl S EUICAS of thgmisg lepng-

Same UNCLASSIFIED
SECURITY Be CL OP CASI F1 CTN/G M DOW GRZ nteed

SCHD4L

SCCURITY CA &ItCW OF THIS PAGECUhin DAMS Ealoged)

acquisition &asnagers for specifying the overall quality of a software system.

SICURIY CLASSIFICAION OF ?"IS PASGf'hai Date Etere

*I.
ri PREFACE

This document is the final technical report (CDRL A003) for the Factors in

Software Quality Study, contract number F030602-76-C-0417. The contract was

performed in support of the U.S. Air Force Electronic Systems Division's

(ESD) and Rome Air Development Center's (RADC) mission to provide standards

and technical guidance to software acquisition managers.

The report consists of three volumes, as follows:

Volume I Concept and Definitions of Software Quality

Volume II Metric Data Collection and Validation

Volume III Preliminary Handbook on Software Quality for an

Acquisition Manager

The objective of the study was to establish a concept of software quality

and provide an Air Force acquisition manager with a mechanism to quantita-

tively specify and measure the desired level of quality in a software product.

Software metrics provide the mechanism for the quantitative specification and

measurement of quality.

This secuid volume describes the application of the metrics to software

products and the validation of the metrics' relationship to software

quality.

A I ~ PI

"" DDC

-.... Ni' J "

11 I I/VA A LT E

TABLE OF CONTENTS

Section Pg

7 RELATIONSHIP OF METRICS TO QUALITY FACTORS.7-1

1.1 Concept of Relationship. 7-1

7.2 Data Used for this Study. 7-4
7.3 Normalization Function Development. 7-14

7.4 Validation Process.7-24

7.5 Figure of Merit Procedure 7-28

8 METRIC DATA COLLECTION. 8-1

8.1 Metric Application.8-1

8.2 Tools Used for Data Extraction 8-5

8.3 Other Tools Applicable to Metric Data Collection 8-6

REFERENCES. Ref-i

APPENDIX C: RESULTS OF DEVELOPMENT AND VALIDATION OF
NORMALIZATION FUNCTIONS. C-i

APPENDIX D: METRIC APPLICATION D-1

LIST OF FIGURES

Figure Number Title Page

7.1-1 Software Development Process Control 7-2
7.2-1 Air Force's Data Bases Chosen. 7-5

7.2-3 DPR/SPR/MTM History for Selected Data Bases 7-8
7.3-1 Frequency Distribution for Metric'SD.2 7-19

7.3-2 Frequency Distribution for rN............7-20
7.3-3 SD.2 (Implementation) Normalization Function. 7-21

7.4-1 Validation of SD.2. 7-26
7.5-1 Figure of Merit Procedure 7-29
7.5-2 Determination of Level of Confidence 7-29
8.1-1 Automated Standards Checking During Design. 8-4
C-1 ET.l R (Design) Normalization Function. C-7
C-2 ET.2 R (Design) Normalization Function. C-8
C-3 ET.5R (Design and Implementation) Normalization

Function C-9
C-4 S1.1 R (Design) Normalization Function. C-10
C-5 SI. 3R (Design) Normalization Function. C-li
C-6 ET.lR (Implementation) Normalization Function. C-13

C-7 51*1R (Implementation) Normalization Function. C-14
C-8 S1*3 R (Implementation) Normalization Function. C-15
C-9 S1*4 R (Implementation) Normalization Function. C-16
C-10 51.1M (Design) Normalization Function. C-24
C-li SI. 3M (Design and Implementation) Normalization

Function C-25
C-1? S1.1N (Implementation) Normalization Function. C-26

C-13 SI.4 (Implementation) Normalization Function. C-27
C-14 MO.214 (Implemmntation) Normalization Function. C-28

C-15 SD.2M (Impluementation) Normalization Function. C-29
C-16 SD.3 (Implementation) Normalization Function. C-30
C-17 CO.lx (Implemmntationi) Normalization Function. C-31
C-i8 ND.2F (Design) Normalization Function. C-34j iv

LIST OF FIGURES (Continued)

Figure Number Title Page

C-19 GE.2 F (Design) Normalization Function C-35

C-20 MO.2F (Implementation) Normalization Function C-36

C-21 GE.2F (Implementation) Normalization Function C-37
C-22 SD.2F (Implementation) Normalization Function C-38

C-23 SD.3F (Implementation) Ncemalization Function C-39

D.2-1 Automated Analysis of Decision Points D-5
D.2-2 Status of Problem Reports D-6

0.3-1 Automated Consistency Checks During Design D-7
D.4-1 Data Representation on Flowcharts D-9

D.9-1 GE/ISDS Complexity Measure D-17
D.10-1 Source Code Profiles by Code Audit Routines 0-20

D.12-1 Hierarchial Structure Measure Example D-24

D.18-1 Comment Count by Code Audit Routine D-35
D.18-2 Effectiveness of Comments Examples D-36

LIST OF TABLES

Table Number Title Page

7.2-1 Problem Report and Man-Power Expenditure
Categorization 7-9

7.2-2 Data Support for Normalization Function Development
and Validation 7-12

7.3-1 Regression Analysis Summary 7-23

7.4-1 Validation Data Summary for Maintainability 7-25
8.1-1 Summary of Collection Techniques 8-1
8.1-2 Source Frequency 8-2

C-1 Reasons for No Analysis or Correlation C-2

C-2 Data Collection Summary for Correctness C-3

C-3 Data Collection Summary for Reliability C-4
C-4 Regression Analysis Summary for Reliability C-6

C-5 Data Collection Summary for Efficiency C-17
C-6 Data Collection Summary for Usability C-20

V

LIST OF TABLES (Continued)

TabTe Number Title Page

C-7 Data Collection Summary for Maintainability C-22
C-8 Regression Analysis Summary for Maintainability C-23

C-9 Data Collection Summary for Flexibility C-32

C-lO Regression Analysis Summary for Flexibility C-33
C-11 Data Collection Summary for Testability C-40
C-12 Data Collection Summary for Reusability C-42

C-13 Data Collection Summary for Portability C-44
C-14 Data Collection Summary for Interoperabllity C-46

D.1-1 Metric Source and Tool Legend D-1

D.1-2 Other Data Collection Tools D-2

4vi

SECTION 7

RELATIONSHIP OF METRICS TO QUALITY FACTORS

7.1 CONCEPT OF RELATIONSHIP

The hierarchical framework which has evolved supports the simple, understand-

able, and logical relationships of the components of the software quality

concept. It also supports the mathematical formulation of the relationship

between the metrics and the quality factors.

A software development can be envisioned as a process which is controlled by

management (both contractor management and AF SPO personnel). This control

is exercised through reviews, status reporting, and software products (Section

5, Interim Report #2) delivered during the development effort (Figure 7.1-1).

Currently, the major emphasis of the control is to evaluate the schedule and

cost performance and to determine the functional correctness of the software

being developed. The concept underlying software quality metrics is to use

these control vehicles to provide an indication (and therefore a mechanism

of control) of the quality of the software product to be delivered.

These software qualities or characteristics which go beyond the technical

mission - qualities such as reliability, maintainability, usability, test-

ability, and portability, which have been defined in previous sections -

have been recognized in recent years as a necessary concern for software

development managers.

This recognition has come about because of many instances in which not con-

sidering factors such as these has driven total project costs well beyond

initial estimates. It has been found that the costs throughout the total
life cycle are more affected by the characteristics of the software system

than by the mission-oriented functions performed by the software system.

Large software systems have sometimes proven untestable, unmodifiable, and
largely unusable by operations personnel because of the characteristics of

the software.

7-1

*i

. l II NI

a.U

C'4A

LUC

LDI

LaiI--E
u CA

9LL
Mow

LA 4 J

C1*5

NI

7-2

The metrics that have been established provide quantitative measures of

specific software attributes. At any specific time during the software

development, a set of metrics can be applied to available review material,

documents, and code. Table 6.2-1 identifies which metrics were applied

during the three phases of requirements analysis, design, and programming.

When the metrics are applied, the resulting measurements can be viewed as

an n-tuple:

(MI, m2 , m3 , • ., in)

Each element, mi, of this n-tuple represents a quantitative measure of the

system with respect to a specific metric or software attribute.

Certain subsets of this n-tuple relate to specific software quality factors.

For example, metrics i = 1 to k nay relate to maintainability. The subset

of the n-tuple

(MI , m2 , • k

then, are the metrics which Table 6.3-1 identifies as related to maintain-

ability. This relationship can be viewed as a function relating the

measurement-tuple to a rating of the specific qualitv factor:

f(mI, m2 ... , k) = rM

where rM is a rating of the maintainability of the software.

The definitions of the quality factors support the concept of a rating, e.g.,

the rating for the quality factor, maintainability, would be in terms of the

amount of effort (man-days) required to maintain the software.

A preliminary identification of the nature of the relationship f() was the

goal of the fourth phase of this contract effort. The relationship is

called the normalization function.

The derivation of mathematically complete, generally applicable functions were

beyond the scope of this effort. The limiting factor was the size and nature of
our sample. This aspect of the study is discussed in paragraph 7.2. The procedure

7-3

for the derivation of the normalization functions (paragraph 7.3), the concept

of their use through a figure of merit procedure (paragraph 7.5), and the

methodology of validating these relationships (paragraph 7.4) are discussed in

this report and specific examples from our experience are presented.

The metric n-tuple has considerable value from a quality assurance viewpoint.

An analogy can be drawn with the set of indicator lights in a cockpit of an

airplane. If a particular indicator light flashes, this immediately identifies

a specific characteristic which is beyond acceptable limits or has reached

a level at which attention should be focused on that characteristic. There

may be a sound reason for the indicator to be flashing, not necessarily result-

ing from an underlying problem, but a justification should be established.

This particular use of the metric n-tuple, without the precise relationship

provided by a normalization function, is explored and discussed further in the

conclusion of this report and in Volume III.

7.2 DATA USED FOR THIS STUDY

Two large-scale software system developments for the Air Force were used as

the data bases for application of the metrics. The two systems were chosen

because they represent large-scale software developments, were developed

according to military standards, and represent two different applications.
Figure 7.2-1 presents some of the general characteristics of the two systems.

System A is a command and control system developed in JOVIAL (J4). Periodically,
a new version of the system is developed in response to changes in hardware

and software requirements. The data base used represents a recent formal
product delivery of the system. The system represents an application with

which both the customer and GE have had considerable experience. The system

has an excellent operational history.

* i System B is a data base management system developed in JOVIAL (J4). The data
*base used is the initial software development of the system. It typified the

development of a new capability and exhibited several significant problems
during the design and development phases. The system provides the capabilities

7-4

F- Cc ,l CD

IjLL
CO ~ I -L C aC DL I-j LDaQ; - 14

<. cc--xJL I"

-L nIJ 4J

-Ix a

-z LA 0

V)J - xn wIn

Ia a X ~ &

a-7-5

to update, delete, and modify portions of a large data base as well as

selectively list, retrieve, or compare two data bases.

The data base for each system consists of the following:

* Documents - The complete set of documents identified in

Appendix B, including the requirements specification, design
specificationw, test plans, user manual, interface control
document, etc. were available for analysis.

* Review Material - The documentation prepared for and the recorded

proceedings of the various reviews identifed in Appendix B were
part of the data base.

a Source Code - The source code listings of each program in both

systems were available both in hardcopy and on magnetic tape.

* Problem Reports and Configuration Management Reports - The
complete set of problem reports identified in Appendix B were

available as well as the configuration management report which
maintains a log and status of the problem reports. Figure 7.2-2

presents examples of each of these reports.

The Design Problem Report, DPR (item G), identifies problems the

programmer and customer have encountered with the system analyst's
design. The Software Problem Report, SPR (item C), identifies soft-
ware problems encountered with a program. The Software Analysis

Report, SAR (item D), provides the scope of the problem and recommends
the solution/action. The Modification Transmittal Memorandum, MTM

(item E), COMPOOL Change Request, CCR (item F), and the Data Base
Change Request, (DBCR, not shown), indicate solutions/changes imple-

mented. The Configuration Management (CM) Status Update Listing (item A)
provides time-to-fix statistics by tracking the maintenance efforts. The
Summary Listing (item B) will be discussed in more detail in Section 8

since it provided automated metric data.

7-6

00

aL

61S..I. z

Los,,. v02

M0
V:~

a C All j

r L

47-

ZE 1A A~~ 4OP

The problem reports were used to establish ratings for the various quality

factors. For the two data bases, a significant number of reports were

available, as illustrated in Figure 7.2-3.

DPR/SPR/MTM HISTORY FOR SELECTED DATA BASES

5000
4000 SP

3000

2000 DPRs

1000 MTMs

A D98IGN
A DVLOPMENT A

Figure 7.2-3 DPR/SPR/MTM History For Selected Data Bases

For the selected sample of modules, the corresponding problem reports

were extracted and categorized. The categorization was accomplished by

analyzing the problem and solution described on the problem reports and

grouping the problem according to Table 7.2-1. Also, data on man-power

expenditure to fix problem, to make changes, etc. was extracted from

the configuration management system and categorized according to

Table 7.2-1. It was felt that man-power expenditures represented the

severity or cost of problems more than the number of problem.

e Desion Charts - As part of the design documents, overview and detailed

design charts are provided. For System B, these design charts were

available in machine readable form, which facilitated automated

metric analysis.

e Metric Information - Considerable metric data was available as part

of the data bases. The summary listings (item B in Figure 7.2-2)

provided a statistical profile of each program for the two systems.

Such statistics as the number of cards, statements, procedures, de-

claratives, comments, IFs, FORs, direct code statements (assembly

7-6

Table 7.2-1 Problem Report and Man-Power Expenditure Categorization

CATEGORY BY
QUALITY FACTOR EXPLANATION

9 CORRECTNESS The function which the software is to perform is
incorrect. The rating is in terms of effort required
to fix.

e RELIABILITY The software does not function as expected. The
rating is in terms of effort required to fix.

• EFFICIENCY The software does not meet performance (speed, stor-
age) requirements. The rating is in terms of effort
required to fix.

e INTEGRITY The software does not provide required security.
The rating is in terms of effort required to fix.

* USABILITY There is a problem related to operation of the soft-
ware, the user interface, or the input/output. The
rating is in terms of effort required to fix.

@ MAINTAINABILITY The rating is in terms of effort required to correct
any of the above problems.

* FLEXIBILITY The rating is in terms of effort required to make a
modification due to a change in specifications.

* TESTABILITY The rating is in terms of effort required to test
changes or fixes.

* REUSABILITY The rating is in terms of effort required to use
software in a different application.

e PORTABILITY The rating is in terms of effort required to convert
the software to operate in a different environment.

e INTEROPERABILITY The rating is in terms of effort required to couple
the system to another system.

7-9

language), GOTOs, breaks from loops, operands, operators, delimiters,

etc. were available for the two systems. This metric data was oriented
primarily to the source code. This metric data, as well as all of the

other metrics established during this effort, are covered in more

detail in Section 8.

Each of these items was available for analysis. Essentially, they were

utilized as sources for metric data or, in the case of problem reports and

the configuration management report, as sources of the error and maintenance

history of the software. While our data bases represent an extremely compre-

hensive set of data about a software system development, some difficulties

were encountered. Several previous or on-going efforts ([THAYT76), [NELSR75],

[SHOOM75], [WILLN76]) sponsored by RADC have very ably discussed the problems

of data collection. Basically, the following problems arise because the data

is collected after the fact:

1. Large volume of data which must be manually analyzed

2. Completeness and validity of data with respect to goal of analysis

is difficult to determine.

3. Impact on production process and personnel must be kept at a minimum.

4. Interpretation of data decreases in accuracy as the age of the data

increases.

The impact of item 1, with the resources available in this study, was to reduce

the number of modules that were analyzed. System-level metrics were applied
to both systems but module-level metrics were only applied to approximately

40% of the modules of both systems. The subset of modules were chosen to

be representative of the systems. An equal distribution of modules which

were small (< 400 statements), medium (4001 n :S800 statements), and large

(2 800 statements) in size and which had a small number of SPRs (10),

a medium number (10 n <25), and a large number (> 25) written against

them were chosen.

7-10

I

I

The impact of items 2, 3, and 4 above on our study was minimal because of

the large amount of data and complete documentation that is collected and

generated during a software development in our environment.

Several other restrictions were imposed on the study because of data avail-

ability. During the derivation of the quality factors and quality metrics,

a complete view of software was taken. However, the operational and mainte-

nance historical data necessary to validate all of the quality factors was
not available. For example, some of the metrics are system-level metrics

only, i.e., they are measured at the system level. Since only two system
developments were used, development of a normalization function and validation

of its accuracy was not possible. Also, the two systems have not experienced

all of the activities required to accumulate historical data to validate

metrics relating to several of the quality factors. For example, neither

system has been converted to operate in another environment. Therefore, a

normalization function relating the metrics with the quality factor portability
was not possible. Metrics relating to interoperability, portability,

reusability, testability, integrity, and efficiency could not be analyzed

because historical data was not available.

All of the metrics were applied to obtain experience with their data collection.

This experience is described in Section 8 and Appendix D. Table 7.2-1 identi-

fies which quality factors and their related metrics were supported by the

data available. The plus (+) sign indicates that an analysis was possible
because data was available and the metric could be applied at the module

level. A zero (0) indicates that either the metric was a system level metric

and therefore the sample was too small and/or historical data was not avail-

able to conduct an analysis. The code column relates the metrics to the

software quality metrics table 6.2-1.

7-11

Table 7.2-2 Data Support for Normalization Function Development and Validation

QDALITY FACTOS

METRICSCOEt

A A NA PA NA A PA NA NA NA NA

TRAC(AIIIL ITY TR.1 SYS 0

CONMILILNLSS CILCKLIST CP.1 SYS 0

PROCEDURE CONSISTENCY CS.I SYS 0 0 0
DATA CONSISTENCY CS.2 SYS 0 0 0

ACCURACY CHECKLIST AY.1 SYS 0
ERROR TOLERA NCE CONTROL ET.1 SYS 0

ERROR TOLERANCE
INPUT DATA ET.2 SYS 0

ERROR TOLERANCE
RECOVERY FROM
COMPUTATIONAL FAILURES ET.3 SYS 0
ERROR TOLERANCE
RECOVERY FROM
HAROMARE FAULTS ET.4 SYS 0

ERROR TOLERANCE
RECOVERY FROM
DEVICE ERRORS ET.5 SYS 0

DESIGN STRUCTURE SI.1 MOo + + 0

STRUCTURE PROGRAIMING SI.2 MO + + 0

COMPLEXITY 1LEASURE SI.3 MOD + + 0

CODE SIMPLICITY SI.4 MOD + 4 0

STABILITY MEASURE O.1 SYS 0 0 0 0 0 0

MODULAR IMPLEMENTATION MO.2 MOO 4 * 0 0 0 0

REFERENCE GENERALITY GE.1 SYS 0 0

IMPLEMENTATION
GENERALITY GE.2 MOD + 0

DATA STORAGE
EXPANDABILITY EX.1 SYS 0

COMPUTATION
EXTENSIBILITY EX.2 SYS 0

MODULE TESTING (N.1 MOO 0

INTEGRATION TESTING IN.2 SYS 0

SYSTEM TESTING IN.3 SYS 0

QUANTITY OF COMMENTS SD.1 MOD + + 0 0 0 0

EFFECTIVENESS OF
COMMENTS SD.2 MOD + + 0 0 0 0

DESCRIPTIVENESS OF
IMPLEMENTATION
LANGUAGE 50.3 M4OD + + 0 0 0 0

PERFOPJMANCE
REQUIREMENTS
ALLOCATED TO
DESIGN EE.1 SYS 0
ITERATIVE PROCESSING o
EFFICIENCY EE.2 MOD

DATA USAGE EFFICIENCY EE.3 MOD 0
STORAGE EFFICIENCY SE.1 NOD 0

ACCESS CONTROL AC.1 SYS 0

ACCESS AUDIT AA.1 SYS 0

OPERABILITY OP.1 SYS 0

TRAINING TG.? SYS 0

7-12

k

Table 7.2-2 Data Support for Normalization Function D~evelopment and Validation (Cont.)

___QUALITY FACTORS

S.--

METRICS CODE ~ j tiI Z-7

A A NA PA NA A PA N4A NA NA MA

USER INPUT INTERFACE CH. 1 SYS 0
USER OUTPUT INTERFACE CM.2 SYS 0

SOFTWARE SYSTEM
INDEPENDENCE SS.1 MDO 0 0
MA.CHINE INDEPENDENCE MI 1 MOD 0 0
COMMUNICATIONS
COMMA I TY CC.1 SYS a
DATA COMMONALITY DC.1 SYS 0
CONCISENESS CO.1 SYS +

LEGEND

SYS - SYSTEM-LEVEL METRIC

MOO - MODULE-LEVEL METRIC

A -DATA AVAILABLE) HISTORICAL DATA AVAILABLE
PA - DATA PARTIALLY AVAILABLE' TO DEVELOP NORPALIZATIOE
NA - DATA NOT AVAILABLE FUNCTION FOR QUALITY FACTOR

+ - ANALYSIS POSSIBLE

O - ANALYSIS NOT POSSIBLE

7-13

A more subtle yet very significant impact on our study was the fact that we

applied the metrics well after the system had been delivered and was opera-

tional. Many of the problems (low metric scores) which would have been

realized had the metrics actually been applied during the development were

not evident. For example, had we applied the set of metrics related to
design at the time of the CDR, significantly different metric scores than the

ones recorded in this study would have been realized. Over time, many of the

problems have been identified, analyzed and corrected. This bias that was
introduced is very significant, especially to the metrics applied during the
requirements and design phases. The metric scores can be assumed to be

significantly inflated.

Thus, the most effective and accurate means of applying the metrics and also

establdshing normalization functions would be in an on-line mode, that is,

applying the metrics during a software development effort, tracking error

history, and then accumulating operational and maintenance historical data

to establish normalization functions. The data would be current and therefore

more accurate and easier to collect and would reflect the status of the soft-
ware development in terms of the software quality metrics more realistically.

This on-line application of the metrics is described further in Section 8 when

the application of the metrics during this effort is discussed.

7.3 NORMALIZATION FUNCTION DEVELOPMENT

In this section, a description of the methodology of deriving a normalization

function will be described and then examples will be provided. Complete

results from this effort are contained in Appendix C.

The methodology is as follows:

, The metric n-tuple for a particular phase of development is applied

to the available software products (review material, documents, code).

This process is done initially at a module-by-module basis and then

at a system level. The application of each metric is described in

N Section 8. The results of this step are n-tuples of measurements

for each module and for each system.

j . . .7-14

9 Subsets of the measurement n-tuples which relate to specific quality

factors are segregated. For example, the k-tuple, (m1, M2, . . .mk).

which represents the measurements for the k metrics which relate to the

quality factor, maintainability, are extracted for each module and each

system.

* Data which represent the quality factor performance or rating of

the individual modules and systems are collected. For example, the

amount of effort expended to correct fixes to each module and system

is collected to represent a rating of the maintainability of that

module or system.

e Using the measurement k-tuple as independent variables and the ratings

of the individual modules or systems as dependent variables, a regres-

sion analysis is performed to derive the normalization function.

Linear regression analysis was performed in this study. There is

some indication that in a few selected cases a nonlinear function

might be more appropriate. This exploration should be considered in

future efforts. The resulting function, in the linear regression

case, takes the form:

rp =a + a m af 0 1 1 a2m2 +... akk
where rP is the predicted rating of quality factor f, given the

f

measurement k-tuple (m,, m2, m3, . . ., mk) and the ai are the

regression coefficients derived from the regression analysis.

These weights assigned the individual metrics reflect their predic-

tive value with respect to the particular quality factor. Several
iterations of this procedure are required to eliminate the metrics

which do not show significant correlation. If time had permitted,

initially a complete factors analysis would have been performed to

4 group related metrics with specific quality factors. This was done

intuitively during the process of establishing the metrics.

There is a serious misinterpretation which can be made at this point.

The utility of the derived normalization function is very dependent upon

the sample used. In the case of this study, the two systems used,

7-15
*

while two different applications, were developed in the same environment,
according to very strict standards and conventions, using the same language,
machine, operating system, development tools, etc. For this reason many

metrics, when applied to all of the modules, showed no variation in measure-
merits. A simple example is the metric (SI.2), use of a structured language
or structured preprocessor. JOVIAL (J4) wis considered a structured language,
although according to a very strict definition it is not, because; j

9 Several of the structured programming constructs are implemented

within the language.
It is a block oriented language
* Our standards and conventions restrict the use of constructs which

violate some of the structured programming philosophies.

Every module, then, received a score, or measurement, of 1 for this metric.
Since this measurement showed no variation, the regression analysis indicated

there was no correlation between this metric and the quality factor rating.

If this result is interpreted absolutely, then one could conclude that the
use of a structured language or structured preprocessor has no effect or
correlation with the resulting maintainability of the system. This is
obviously an incorrect conclusion. What the result does mean is that for
the application in which the metrics were applied and the regression analysis
was performed, the variability in the maintainability of the modules in a

system or between systems is not a function of the use of a structured
language. The reason is that the use of a structured language is a standard
to which there is strict adherence.

Our expectation is that if these metrics and methodology were applied to other
system developments in other environments and, for this particular example,
in environments where the use of a structured language or structured pre-
processor varied, a significant correlation between this metric and the

resulting rating of maintainability would be indicated.

Thus, the use and interpretation of the normalization function is critical

to its effectiveness. This concept is considered in more depth in Section 9.

7-16

To illustrate the methodology an example will be presented in this section.

Complete data from the regression analyses are provided in Appendix C.

Using the quality factors which were supported with historical data and

for the metrics which could be applied at the module level (see Table 7.2-2),

several analyses were performed. These analyses included analyzing indi-

vidual metrics versus the rating of a factor and a multiple regression

analysis of the k-tuple of metrics relating to a factor. In certain cases

individual elements of a metric were also analyzed on a single basis with

a quality factor when high correlation was expected. The methodology to

perform any one of these analyses was the same. An example of the analysis

of one metric, SD.2, effectiveness of comments measure, and its relation-

ship to the quality factor, maintainability, will be given to illustrate

the methodology.

A sample of modules from System B was used to develop the normalization

function relating metric, SD.2, individually to maintainability.

Standard linear regression techniques ([THAYT76], [FLEIT66], [LABOV66], [COOLW62'

[POOLL77], [PADED56], [KUESJ73]) were used. Routines to perform the analysis we

developed on a PDP 11/40 and Tektronix 4051 terminal. Since the metric and

the quality factor rating were normalized positive values, all data points

fall within the positive quadrant of a graph. The regression line was

forced through the origin to support this concept.

Using the metric table, Table 6.2-1, the measures associated with the

effectiveness of comments metric were collected from a sample of modules.
Historical operations and development data was used to determine the

number of fixes to each module in the sample and the number of man-days

expended to accomplish these fixes. A rating of maintainability was

then calculated for each module by the following formula:

r jMD1

M n

7-17

where:
MDt a Total number of man-days expended on fixes to module i.

n = Total number of fixes to module i.

rM = Normalized rating of maintainability for module I.

The rating of maintainability then is based on the average number of man-

days expended to make a fix to the software.

For the sample chosen, the distribution of occurrence for the metric

value and the rating are shown in Figure 7.3-1 and Figure 7.3-2 respectively.

The histogram is generated by accumulating the number of data point falling
in the interval k< xt S<k + 0.1, where k = 0, 0.1, 0.2,..., 0.9 and dividing by

the total number of modules in the sample to arrive at a frequency of occur-
rence figure.

The independent variable is the metric value determined for each module.
The dependent variable is the rating value determined for each module.
The resulting regression equation is the normalization function. Its form

in the case of one independent variable is:

rM =:ap

where r. is the predicted rating of maintainability, aM is the predictor

coefficient for the metric value, in this case mtric SD.2, D 2

Figure 7.3-3 illustrates the regression line determined for this metric:

r 0.46MSD.2

The dashed lines represent a 90 percent confidence Interval for the sample.

* IThe standard error of estimate is 0.15. The correlation coefficient for

the regre 'on line is 0.92. This represents a significant correlation
between ne ,etric and the rating of maintainability.

7-18

100

80

60
FREQUENCY

OF
OCCURRENCE AVERAGE METRIC VALUE =.74

(%) 40

20

0
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

SD.2 EFFECTIVENESS OF COMM4ENTS MEASURE

1585

I Figure 7.3-1 Frequency Distribution for Metric SD.2

N

7-19

100

8o

FREQUENCY 60
OF

OCCURRENCE AVERAGE RATING VALUE .32
()

40

20

0
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

rN RATING OF MAINTAINABILITY

1587

Figure 7.3-2 Frequency Distribution for r.

7-20

'

1.0

.8

rN .6
I 1 r-SD

AVG KAN-DAYS M N ij
TO FIX / .4

.2

0
0.1 .2 .3.4 .5.6 .7.8 .9 1.0

SD. 2 EFFECTIVENESS OF COMMENTS MEASURE

1586

Figure 7.3-3 SD.2 (Imiplementation) Normalization Function

7-21

This information is displayed in Table 7.3-1. This table is an excerpt

from Table C-8, where the results of the analyses of all of the metrics

related to muintainability are described.

This example will be continued in paragraphs 7.4 and 7.5 to illustrate

the methodology of validating the metrics and arriving at a figure of

merit. The analysis of data points which fall outside the 90 percent

confidence interval will be discussed in paragraph 7.4. The histograms

are provided to allow some evaluation of the sample. In this example,

all metric values were above 0.5. While we would have liked to had a better

range of metric values for the sample, other modules measured in System B

fall within this same range. This represents an environmental limitation

to our study because coaments are strongly emphasized by our standards

and conventions.

Appendix C contains the remainder of the results of the normalization

function development. Tables such as Table 7.3-1 provide summary results

of the normalization functions for the groups of metrics related to a

quality factor, for each individual metric related to a quality factor,

and in some Instances, selected metric elements related to a quality factor.

Remarks highlight specific results in Appendix C. Where regression analysis

was not performed, the summarized metric values are provided for informa-

tion and there is an indication as to the reason why no regression analysis

was performed.

7-22

Table 7.3-1 Regression Analysis Sumary

METRIC MAINTAINABILITY
SYSTEM B SD.2 RATING

INDIVIDUAL AVERAGE .75 .32
ANALYIS RANGE .5-1. .07-.77

ANLSSSTD DEV .13 .15
PREDICTOR .46
COEFFICIlENT ______

STANDARD .15
ERROR OF
ESTIMATE
CORRELATION .92
COEFFICIENT

7-23

7.4 VALIDATION PROCESS

The process of validating a normalization function wili be described and

examples presented. Appendix C contains a summary-of the complete set

of data used during the validation phase of this effort.

The methodology used for validating a normalization function is as follows:

• The normalization function derived in paragraph 7.3 predicts a rating

for any measurement k-tuple. There is a certain variance associated

with the predicted rating and actual rating.
* a 90% confidence interval is determined based on the normalization

function, the variance, and the sample. Another subset of modules

is then plotted and depending on their compliance with the confidence
interval, the normalization function is accepted or rejected.

* In the case where a normalization function is rejected, several

actions can be taken:

- Conduct a factor analysis to determine the minimum number of

dimensions needed to describe the relevant information con-

tained in the original measurements.

- Reevaluate the metrics and their units to ensure they do not

present possible ambiguities in their measurement of the cri-

terion or quality factor.
- Evaluate the correlation coefficients of the metrics. While a

metric may logically be an important characteristic of a software

product, it may not correlate well and therefore is not a consis-

tent predictor of the final quality of the software.
- Reestablish a normalization function by utilizing regression

analysis techniques.

- Evaluate the quality factor rating (its representative distribution).

It may not be linear itself and therefore cause problems in estab-

lishing a linear relationship with the associated metrics. Consider-

ation of nonlinear regression will be given in this case.

7-24

In the example presented in paragraph 7.3, a linear function for the metric

SD.2, effectiveness of comments, and a 90% confidence interval were deter-

mined using a subset of modules of System B. The corresponding metric data

and maintainability rating data were compiled for a subset of modules of

System A. This data is summarized in Table 7.4-1.

Table 7.4-1 Validation Data Summary for Maintainability

SYSTEM A METRIC SD.2

Individual Average .77

metric Range .6-.8
analysis Std dev .018

Average .306

Rating Range .21-.40

Std dev .068

Normalization
function
accepted/ Accepted
rejected

Plotting the points on the graph presented in Figure 7.3-3 results in

Figure 7.4-1. All of the data points fall within the 90% confidence inter-

val. Recalculation of the regression line using all of the data points does

not change any of the values substantially. Thus, this normalization function

is considered validated.

Note that there was one point in the initial sample which fell outside the

90% confidence interval. An evaluation of this module revealed that while

several fixes had been made to the module, they all were related to a basic

problem. Thus, the average time to make the several fixes was quite low,

resulting in the unusually high rating. Based on this explanation, we felt

it was not justified to reject the predictor coefficient determined. During

the validation for several metrics, data points fell outside of the 90%

confidence interval. Those modules were evaluated for any abnormalities

that would justify their deviation from the norm. Where justifications were

dnot found, the normalization function was rejected. In the cases where time,

resources, and data permitted, the steps described in the beginning of this

paragraph were taken.

7-25

1.0

.81

.000

AVG MAN-DAYS) '00

.2

0.1 .2.3 .4 .5.6 .7.8 .9 1.0

SD.? EFFECTIVENESS OF COMMENTS MEASURE

PREDICTOR COEFF: .46
AVG mn: .74
RANGE OF mn: .5-1.0
STD DEV: .13

STDERO OFET .1
CORR COEFF:.9

AVG ERROR .3

Figure 7.4-1 Validation of S0.2

The statements made in paragraph 7.2 qualifying the interpretation of the

normalization function should be reemphasized here. The sample, both in

size and variation in nature, limits the general applicability and precision

of the results. The methodology established and the results achieved,

nevertheless, are valuable.

For instance, of the three metrics quantifying self-descriptiveness (SD.l,

SD.2, SD.3), only SD.2, effectiveness of comments, correlated well with

maintainability. SD.l, a measure of the quantity of comments, varied insig-

nificantly in our sample. The mean was .25 (the percent of comments per

card was 25%), ranging essentially between .20 and .30. This lack of varia-

tion in the measurements meant no correlation with maintainability could be

established. The reason for this lack of variation is our standards and

conventions establish very strict guidelines on what situations should be

commented. This does not mean that SD.I would not be a valuable metric in

another environment where the standards are not as strict. It does mean that

in our environment, where the percentage of comments/cards in programs are

fairly standard, no variation in maintainability is attributable to that metric.

SD.3, descriptiveness of implementation language, did not correlate well with

maintainability either. Again, the main reason was the lack of variation in

the measurements caused by our strict standards on the format of the programs

and naming conventions for variables and a specific software support tool
(GEDIT) used to preprocess all source code and indent, block, and number the
code in a logical, standard manner. Variation in this metric would be found

between system developments or in an environment where strict standards or

automated tools are not used.

The summarized data and results of the validation process for these three

metrics, as well as all of the other metrics for whicn normalization functions

were derived, are in Appendix C.

7-27

7.5 FIGURE OF MERIT PROCEDURE

The intent in deriving a figure of merit is to provide the SPO with an overall

measure for each quality factor. The figure of merit will be normalized

according to the standard units of measurement chosen for that factor. In

keepinq with our example, the figure of merit for maintainability will be in

terms of the average time to fix.

The figure of merit procedure is basically the use of the normalization function

as a predictor of the level of quality being achieved for a quality factor.

Thus, if a particular measurement k-tuple is applied at a specific time during

the development phase, the Values obtained can be inserted in the normalization

function for that quality factor for that phase and a figure of merit is determined.

This figure of merit can then be evaluated relative to the level of quality

specified by the customer. If the figure of merit is below the specified

level, evaluation and/or corrective actions should be initiated. If the

figure of merit is above the specified quality level, then some degree of

confidence that the development effort is progressing satisfactorily with

respect to the required software qualities is derived.

Figure 7.5-1 continUes the example used previously. The normalization

function is:
r - .46 m SD

2

rM

If the system (or module) measurement for SD.2 was found to be .75 during the

implementatton phase of the development, a predicted rating of .345 results. If

the SPO had specified that the required maintainability of the system was an

average time-to-fix of one man-week (1/5 man-days = rM = .2, identified in

Fiqure 7.5-1 by point A), he has approximately an 84% level of confidence that'I the maintainability of his system will be better than he specified. This

figure is arrived at using the predicted rating, the specified rating, and

the standard error of estimate determined during the regression analysis.

Figure 7.5-2 illustrates the derivation of the confidence level.

7-28

1 .0

.8

.00

.6

0
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

SD.2 EFFECTIVENESS OF COMMIENTS MEASURE

Figure 7.5-1 Fi gure of Merit Procedure

(SPECIFIED RATING) .2

MEAN - .345 (PREDICTED RATING)
STANDARD DEVIATION -. 15 (STANDARD ERROR OF ESTIMATE)

LEVEL OF CONFIDENCE - Pr jx !~.2) *84 (SHADED AREA)

N 1590

Figure 7.5-2 Determination of Level of Confidence

7-29

This relationship between the figure of merit derived from the metrics and

the quality level specified by an SPO is elaborated upon in Appendix E,

which presents a preliminary handbook for SPOs on the specification of

software qualities.

7

7-30
,(

SECTION 8

METRIC DATA COLLECTION

8.1 METRIC APPLICATION

While the historical data and sample size prevented the establishment of

normalization functions for all of the quality factors, a significant benefit

of the study was the experience gained in applying all of the metrics to the

systems. Whether regression analysis was to be performed or not, the metric

data was collected for all of the metrics.

It was found that applying the metrics to the various software products

provided considerable insight into the design and implementation of the

software. This reflects the n-tuple (indicator lights) concept described

in paragraph 7.1.

The purpose of this section is to identify where the metric data was found,

how it was collected during this study, and what automated tools are available

that could be used to collect the data in future applications.

During this effort most metric data was collected manually. Some automated

tools were available and used. Other tools were identified that would provide

metric data. Table 8.1-1 provides summary information on the collection

techniques used.

Table 8.1-1 Summary of Collection Techniques

DEVELOPMENT
PHASES REQUIREMENTS DESIGN IMPLEMENTATION

Number of
elements 25 108 157

Collected
during this
study:

Manually 25 100 144

Automatically - (0%) 8 (7%) 13 (8%)

Can be
: automatically

checked 6 (24%) 30 (28%) 83 (53%)

8-1

Thus, over 40% of the metric data can be collected via automated means. As

more formal languages and techniques evolve for preparing requirements

specifications and design specifications, a larger percentage of automated

collection would be expected. The remaining metric d. ta which is manually

collected, in general, can be done quite routinely by trained personnel.

There is the typical 10% of the data which requires a significant data collec-

tion effort. As experience with the metrics is gained, a determination of the

significance of those metrics and whether they are worth the data collection

effort required can be made.

Table 8.1-2 identifies the sources of the metric data and the number of

elements which use that source for metric data, e.g., the system requirement

specification is utilized as a source of data for 23 measurements (elements).

More than one source may be used to arrive at a measurement, so the totals

between this table and Table 8.1-1 do not directly correspond.

Table 8.1-2 Source Frequency

NUMBER OF TIMES

SOURCES USED AS SOURCE

Software System R. quirements Specification 23

Standards and Conventions 8

Preliminary Design Specification 13

Preliminary Design Review Material 2

Detailed Design Specifications 98

Critical Design Review Material 2

Validation and Acceptance Test Specification 5

'7 User's Manual/Operator's Manual 25

Interface Control Document 4

Data Base Mpnagement Plan 3

Problem Reports 2

Source Code 135

Training Material 2

Programer's Notebook 2

8-2

SECTION 8

METRIC DATA COLLECTION

8.1 METRIC APDLICATION

While the historical data and sample size prevented the establishment of

normalization functions for all of the quality factors, a significant benefit

of the study was the experience gained in applying all of the metrics to the

systems. Whether regression analysis was to be performed or not, the metric

data was collected for all of the metrics.

It was found that applying the metrics to the various software products

provided considerable insight into the design and implementation of the

software. This reflects the n-tuple (indicator lights) concept described

in paragraph 7.1.

The purpose of this section is to identify where the metric data was found,

how it was collected during this study, and what automated tools are available

that could be used to collect the data in future applications.

During this effort most metric data was collected manually. Some automated

tools were available and used. Other tools were 4dentified that would provide

metric data. Table 8.1-1 provides summary information on the collection

techniques used.

Table 8.1-1 Summary of Collection Techniques

DEVELOPMENT
PHASES REQUIREMENTS DESIGN IMPLEMENTATION

Number of
elements 25 108 157

Collected
* ,during this

study:

Manually 25 100 144

Automatically - (0%) 8 (7%) 13 (8%)

Can be
automatically
checked 6 (24%) 30 (28%) 83 (53%)

8-1

If

The frequency with which the sources are used indicates their importance

to the resulting software end product and the quantifiability of their

contents. For example, the source code is most frequently used and the

detailed design specification is second most frequently used. The importance

of the user's/operator's manual is indicated by its relatively high use. The

relatively high use of the software system requirement specification and the

preliminary design specification emphasizes the fact that some measures can

ba applied very early in the development phase.

Appendix D provides a detailed examination of each measure, identifying where

it was collected for this study and what type tool is available to automate

its collection. The next two paragraphs briefly describe the automated tools

used to collect the metric data during this study (paragraph 8.2) and those

tools applicable to this task (paragraph 8.3) but not available during this

study.

In Appendix D, examples are used to highlight the procedures and tools used

to determine the measures. To illustrate the contents of this appendix, the

following example is provided:

An element of the design structure metric is based on the number of

modules which do not have a single entrance and a single exit (SI.1(6)).

During the design phase of a software development, an example of an

automated tool which provides data for this measure is the Integrated

Software Development System (GE/ISDS), described in paragraph 8.2.

Using design charts in machine readable form, GE/ISDS performs various

analyses on the design of individual programs. One such analysis

identifies routines which have multiple entrances and exits. An example

of a design chart and the resulting automated analysis is shown in

Figure 8.1-1.

Appendix D contains many other such examples.

8-3 4

L III II II-

U-3

to, I.

CLC

LVL.

(0 Ix

8-4t

8.2 TOOLS USED FOR DATA EXTRACTION

The following software support tools were used during this study to auto-

matically collect metric data. Examples of outputs from the tools are in

Appendix D corresponding to the measures which they provided.

A brief overview oriented toward describing the capabilities of each tool

is provided. The intent in describing these tools and providing examples

of their output in Appendix D is to emphasize that automated metric appli-

cation is possible early in the development phase.

8.2.1 GE/INTEGRATED SOFTWARE DEVELOPMENT SYSTEM (GE/ISDS)

GE/ISDS is an integrated system of software support tools based on a common

data base of software development information. Current capabilities emphasize

analyses utilizing machine readable design charts. Some of the automated

analyses include analysis of the design charts for compliance with standards,

flow path, minimum number of tests required, and connectivity. Prototype

versions of several other tools include methods for using structured pro-

gramming constructs in flowcharts, interactive data base usage/structure

definition, a measure of program complexity based on control structure and

variable usage, and a formalized test procedure language for thorough
testing of program segments ([CHANP76], [RICHP74], [RICHP76]).

8.2.2 CODE AUDIT ROUTINES (GJSUMRY/ATP)

These routines provide a profile of software characteristics for JOVIAL (J4)
code. Included in the profile for each routine are counts of the number of

cards, statements, procedures, declarations, comments, IFs, FORs, direct code

statements, GOTOs, breaks from loops, operators, operands, delimiters, and

other specified JOVIAL constructs ([ALGEC77]).

8.2.3 CONFIGURATION MANAGEMENT SYSTEM

S -As an aid to the strict configuration control of the development of software and

any changes made, this system maintains a current status of any problem reports

recorded against a routine. The system provides a log of any changes made and

actions taken with regard to the software being developed.

8-5

8.2.4 REQUIREMENTS TRACE ROUTINE

This routine maintains a current list of performance requirements identified
with itemized software system requirement specifications.

The impact of using these tools during this study was quite significant. Far
less data collection would have been possible if all data collection had been
done manually. The advantages in accuracy and manpower savings of automated
data collection stresses its importance to the application of metrics.

8.3 OTHER TOOLS APPLICABLE TO METRIC DATA COLLECTION
Several other software support tools have been identified which appear to be
applicable to metric data collection. A brief description of several will be
provided in this section. The intent of tts section is not to provide a support
software tools survey, so the descriptions will be generic in nature. Examples

of available tools will be mentioned.

8.3.1 REQUIREMENTS SPECIFICATION LANGUAGE/ANALYZER

The underlying concept of this tool is that if the requirements specification
is written in a formal language, some form of analyses can be made on the
specification. The analyses that can be done that relate to our metrics fall
within the completeness and consistency areas. Examples of this tool are
PSL/PSA (TIECD76) and RSL [BELLT76].

8.3.2 PROGRAM DESIGN LANGUAGE/ANALYZER
Consistent with the concept expressed above, if the design specification is
written in a formal language (PDL), some analyses can be automatically performed.
GE/ISDS provides these type of capabilities based on design charts. Planned

enhancements are to provide the same analysis capabilities for a PDL. Some
examples of work in this area are the PDL [PROG75] concept originated by IBM

8.3.3 AUTOATED VERIFICATION SYSTEM

These support software tools involve instrumenting source code to measure test
effectiveness. The structure of the code, as well as path usage and time data,
is analyzed. Some assistance in generating test data is provided. Examples of

8-6

tools in this group include FLOW [RICHP76], ANALYZER [NBS74 1, NODAL [NODA75J,

PET [PET72 J, and JAVS ([BROON76], [MILLE74]).

8.3.4 TEST PROCEDURE LANGUAGE

This tool is currently under development and is based on the use of a test pro-

cedure language (TPL) to formally state and document test procedures and a

VERIFIER to apply the test procedures to the target modules or system. The
test procedures are a deliverable product of the software development process
and are used for both initial checkout and subsequent regression testing of

target program modifications (PANZD76).

8.3.5 EXECUTION ANALYZER

Considerable information is gained by executing code under various loading

conditions. A post execution routine could provide automated analysis and
reports of pertinent metric data based on the execution. Such information

as run time, core usage, module link-time and OS link-time are some of the

examples indicated in Appendix D that could be reported via an automated

tool.

8.3.6 CONSISTENCY CHECKER

This type tool provides the capability to identify various consistency measures

relating to data, variable usage and initialization as well as others. Con-
sistency checking can be done at the code level [RAJAC75] or at a specification

level, such as extensions to PSL/PSA would provide.

8.3.7 DATA BASE ANALYZER
Analysis can be performed on the data base via, tools such as a data definition

language processor or a data base optimizer. The analyses center on data

usage, data structure, and data redundancy.

These tools represent a sample of those available. The major concern would be

* of effectively using a subset of these tools in a software development environ-
ment. An integrated concept would be required.

8-7/8-8

REFERENCES

ABERD72 Abernathy, D.H., et al, "Survey of Design Goals for Operating Systems",
Georgia Tech, GITIS-72-04, 1972.

ACQU71 "Acquisition and Use of Software Products for Automatic Data Processin2
Systems in the Federal Government", Comptroller General of the U.S.,
Report to the Congress, June 1971.

AIRF76 "Air Force Systems Command", Aviation Week & Space Technology, 19 July 1976.

ALGEC77 Algea, C., "ATP - Analysis of JOVIAL (J4) Routines", Internal GE Working
Paper, March 1977.

AMORW73 Amory, W., Clapp, J.A., "An Error Classification Methodology", MITRE Tech
Report, June 1973.

BELLD74 Bell, D.E., Sullivan, J.E., "Further Investigations into the Complexity of
Software", MITRE Tech Report MTR-2874, June 1974.

BELLT76 Bell, T., et al, "An Extendable Approach to Computer-Aided Software Require-
ments Engineering", 1976 Software Engineering Conference.

BENSJ76 Benson, J., "Some Observations Concerning the Structure of FORTRAN Programs",
International Symposium on Fault Tolerant Computing, Paris, June 1975.

BOEHB73a Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.S., Merritt,
N.J., "Characteristics of Software Quality", Doc. #25201-6001-RU-00, NOS
Contract #3-36012, 28 December 1973.

BOEHB76 Boehm, B., Brown, J., Lipow, M., "Quantitative Evaluation of Software
Quality", 1976 Software Engineering Conference.

BOEHB73b Boehm, B.W., "Software and its Impact: A Quantitative Approach", Datamation,
April 1973.

BOLEN76 Bolen, N., "An Air Force Guide to Contracting for Software Acquisition",
NTIS AD-A020 444, January 1976.

BOULD61 Boulanger, D.G., "Program Evaluation and Review Technique", Advanced Manage-
ment, July-August

1961.

BRADG75 Bradley, G.H., et al, "Structure and Error Detection in Computer Software",
Naval Postgraduate School, NTIS AD-A014 334, February 1975.

BROON76 Brooks, N., et al, "Jovial Automated Verification System (JAVS)", RADC-
•, TR-20, February 1976.

BROWJ73 Brown, J.R. and Buchanan, H.N., "The Quantitative Measurement of Software
Safety and Reliability", TRW Report SS-73-06, August 1973.

BROWP72 Brown, P., "Levels of Language for Portable Software", Communications ofthe ACM, December 1972.

Ref-1

CASEJ74 Casey, J.K., "The Changing Role of the In-House Computer Application
Software Shop", GE TIS 074AEG195, February 1974.

CHAM76 Chang, P., Richards, P.K., "Software Development and Implementation Aids",
GE TIS 76CIS01, January 1976.

CHENL74 Cheng, L., Sullivan, J.E., "Case Studies in Software Design", MITRE Tech

Report MTR-2874, June 1974.

CLAPJ74 Clapp, J.A., Sullivan, J.E., "Automated Monitoring of Software Quality",
Proceedings from AFIPS Conference, Vol. 43, 1974.

COHEA72 Cohen, A., "Modular Programs: Defining the Module", Dtamation, March 1972.

COMP69 "Computer Program Development and Configuration Management", AFSCF Exhibit
375-2, March 1969.

CO#P66a "Computer Program Development and Configuration Management for the Manned
Orbit Laboratory Program", SAFSL Exhibit 20012, September 1966.

COMP66b "Computer Program Subsystem Development Milestones", AFSCF SSD Exhibit
61-47B, April 1966.

CONF64 "Configuration Management During Definition and Acquisition Phases",
AFSCM 375-1, June 1964.

CONF66 "Configuration Management of Computer Programs", ESD Exhibit EST-1,
Section H, 1966.

CONNJ75 Connolly, J., "Software Acquisition Management Guidebook: Regulations,
Specifications, and Standards", NTIS AD-A016 401, October 1975.

COOLW62 Cooley, T., Multivariate Procedures for the Behavioral Sciences, John
Wiley and Sons, Inc., N.Y., 196Z.

CORRA74 Corrigan, A.E., "Results of an Experiment in the Application of SoftwareQuality Principles", MITRE Tech Report MTR-2874, June 1974.

CULPL75 Culpepper, L.M., "A System for Reliable Engineering Software", International
Conference on Reliable Software, 1975.

DAVIC76 Davis, C., Vick, C., "The Software Development System", 1976 Software
Engineering Conference.

DAVIR73 Davis, R.M., "Quality Software can Change the Computer Industry Programs
Test Methods", Prentice-Hall, 1973, Chapter 23.

DENNJ70 Dennis, J.B., Goos, G., Poole, J., Gotlieb, C.C., et al, "Advanced Course
on Software Engineering", Springer-Verlag, New York 1970.

Ref-2

DIJKE69a DiJkstra, E.W., "Complexity Controlled by Hierarchical Ordering of
Function and Variability", Software Engineering, NATO Science Comittee
Report, January 1969.

DIJKE72 Dijkstra, E.W., "The Humble Programmer", Communications of the AC,
October 1972.

DIJKE69b DiJkstra, E.W., "Structured Programing", Software Engineering Techniques,
NATO Science Committee Report, January 1969.

DIJKE72 Dijkstra, E.W., "Notes on Structured Programing", Structured Programmin,
Dahl, Dijkstra, Hoare, Academic Press, London 197.

DOCU74 "Documentation Standards", Structured Programing Series Volume VII and
Addendum, RADC-TR-74-300, September 1974 and April 1975.

D0D172 "DOD Manual for DOD Automated Data Systems Documentation Standards", DOD
Manual 4120.17M, December 1972.

DROSM76 Drossman, M.M., "Development of a Nested Virtual Machine, Data Structure
Oriented Software Design Methodology and Procedure for its Evaluation",
USAFOSR/RADC Tech Report, 11 August 1976.

DUNSH77 Dunsmore, H., Ganon, J., "Experimental Investigation of Programming
Complexity", Proceedings of ACM/NBS Sixteenth Annual Technical Symposium,
June 1977.

EDWAN75 Edwards, N.P., "The Effect of Certain Modular Design Principles on Test-
ability", International Conference on Reliable Software, 1975.

ELEC75 "The Electronic Air Force", Air Force Magazine, July 1975.

ELSHJ76 Elshoff, J.L., "Measuring Commercial PL/l Programs Using Halstead's
Criteria", SIGPLAN Notices, May 1976.

ELSHJ76b Elshoff, J., "An Analysis of Some C-mmercial PL/l Programs", IEE Trans-
actions on Software Engineering Volume SE-2, No. 2, June 1976.

ENDRA75 Endres, A., "An Analysis of Errors and their Causes in Systems Programs",
International Conference on Reliable Software, 1975.

FAGAM76 Fagan, M., "Design and Code Inspections and Process Control in the Develop-
ment of Programs", IBM TR 00.2763, June 1976.

FIND75 "Findings and Recommendations of the Joint Logistics Comanders", Software
Reliability Working Group, November 1975.

FITZA76 Fitzsimmons, A., Love, T., "A Review and Critique of Halstead's Theory of
Software Physics", GE TIS #761SP004, December 1976.

FLEIJ72 Fleiss, J.E., et al, "Programing for Transferability", RADC-TR-72-234,
September 1972.

Ref-3

FLEIT66 Fleishmmn, T., "Current Results from the Analysis of Cost Data for

Computer Programing", NTIS AD-637 801, August 1966.

GILBT76 G6lb, T., Software Metrics, Winthrop Computer Systems Series, 1976.

6000J74 Goodenough, J., "Effect of Software Structure on Software Reliability,
Modifiability, and Reusability: A Case Study", USA Armament Command,
March 1974.

GOO6J75 Goodenough, J., "Exception Handling Design Issues", SIGPLAN Notices,
July 1975.

GOVE74 "Government/Industry Software Sizing and Costing Workshop-Summary Notes",

USAFESO, 1-2 October 1974.

HAGAS75 Hagan, S., "An Air Force Guide for Monitoring and Reporting Software
Development Status", NTIS AD-A016 488, September 1975.

HAGUS76 Hague, S.J., Ford, B., "Portability-Prediction and Correction", Software
Practices & Experience, Vol. 6, 61-69, 1976.

HALSM77 Halstead, M., Elements of Software Science, Elsevier Computer Science
Library, N.Y., 1977.

HALSM73 Halstead, M., "Algorithm Dynamics", Proceedings of Annual Conference of
ACM, 1973.

HALSM72 Halstead, M., "Natural Laws Controlling Algorithm Structure", ACM SIGPLAN,
February 1972.

HAMIM76 Hamilton, M., Zeldin, S., "Integrated Software Development System/Higher
Order Software Conceptual Description", ECOM-76-0329-F, November 1976.

HANEF72 Haney, F.M., "Module Connection Analysis - A Tool for Scheduling Software
Debugging Activities", Proceedings of the 1972 Fall Joint Computer
Conference, Vol. 41, Part 1, 173-179, 1972.

HODGB76 Hodges, B., Ryan, J., "A System for Automatic Software Evaluation", 1976
Software Engineering Conference.

JONE0?7 Jones, C., "Program Quality and Programmer Productivity", IBM TR 02.764,
January 1977.

KERNB74 Kernighan, B., Plauger, P., The Elements of Programing Style, McGraw-
Hill, 1974.

KESSM70 Kessler, M.M., "An Investigation of Program Structure", IBM Federal
Systems Division, Internal emo, February 1970.

KNUTD68 Knuth, D.E., The Art of Computer Programming Vol. 1, Addison-Wesley, 1968.
KNUTD71 Knuth, D.E., "An Empirical Study of FORTRAN Programs", Software Practice

& Experience, Vol. 1, pp 105-133, 1971.~Ref-4

KOSAS74 Ksarajo, S.R., Ledgard, H.F., "Concepts in Quality Software Design",
NBS Technical Note 842, August 1974.

KOSYD74 Kosy, D., "Air Force Command and Control Information Processing in the
1980s: Trends in Software Technologyn, Rand, June 1974.

KUESJ73 Keuster, J., Mize, J., Optimization Techniques with FORTRAN, McGraw-Hill,
N.Y., 1973.

LABOV66 LaBolle, V., "Development of Equations for Estimating the Costs of
Computer Program Production", NTIS AD-637 760, June 1966.

LAPAL73 LaPadula, L.J., "Software Reliability Modeling and Measurement Techniques",
MTR-2648, June 1973.

LARSR75 Larson, R., "Test Plan and Test Case Inspection Specification", IBM
TR 21.586, April 1975.

LEWIE63 Lewis, E., Methods of Statistical Analysis, Houghton Mifflin Company,
Boston 1 -I3.

LIEBE72 Lieblein, E., "Computer Software: Problems and Possible Solutions",
CENTACS USAECOM Memorandum, 7 November 1972.

LIGHW76 Light, W., "Software Reliability/Quality Assurance Practices", Briefing
given at AIAA Software Management Conferences, 1976.

LISKB75 Liskov, B., "Data Types and Program Correctness", SIGPLAN Notices,
July 1975.

LISKB73 Liskov, B.H., "Guidelines for the Design and Implementation of Reliable
Software Systems", MITRE Report 2345, February 1973.

LOVET76a Love, T., Bowman, A., "An Independent Test of the Theory of Software
Physics", SIGPLAN Notices, November 1976.

LOVET76b Love, T., Fitzsimmons, A., "A Survey of Software Practioners to Identify
Critical Factors in the Software Development Process", GE TIS 761SP003,
December 1976.

MANNJ75 Manna, J., "Logical Analysis of Programs", International Conference on
Reliable Software, 1975.

MARSS70 Marshall, S., Millstein, R.E., Sattley, K., "On Program Transferability",

Applied Data Research, Inc., RADC-TR-70-217, November 1970.

M4CCAT76 McCabe, T., "A Complexity Measure", 1976 Software Engineering Conference.

MCCRD72 McCracken, D.D. and Weinberg, G.M., "How to Write a Readable FORTRAN
Program", Datamatlon, October 1972.

Ref-S

:L

I

NCKIJ77 McKissick, J., Price, R., "Quality Control of Computer Software",
1977 ASQC Technical Conference Transactions, Philadelphia 1977.

MCNEL75 McNeely, L., "An Approach to the Development of Methods and Measures
for Quantitatively Determining the Reliability of Software", Ultra
Systems Concept Paper, February 1975.

HEALG68 Mealy, G.H., Farber, D.J., Morehoff, E.E., Sattley, "Program Trans-
ferability Study", RADC, November 1968.

MILI70 "Military Standard Configuration Management Practices for Systems,
Equipment, Munitions and Computer Programs", MIL-STD-483, December
1970.

MIL168 "Military Standard Specification Practices", MIL-STD-490, October 1968.

MILLE74 Miller, E., et al, "JOVIAL/J3 Automated Verification System (JAYS)
System Design Document", GRC, March 1974.

MULOR70 Mulock, R.B., "A Study of Software Reliability at the Stanford Linear
Accelerator Center, Stanford University", August 1970.

MYERG73 Myers, G.J., "Characteristics of Composite Design", Datamation, September
1973.

MYERG75 Myers, G.J., Reliable Software through Composite Design, Petrocelli/
Charter, 1975.

MYERG76 Myers, G.J., Software Reliability: Principles and Practices, John Wiley
& Sons, New York, 1976.

NBS74 "Analyzer - Computation and Flow Analysis", NBS Tech Note 849, 1974.

NELS%74 Nelson, Richard, "A Plan for Quality Software Production", RADC Internal
Paper, June 1974.

NELSR75 Nelson, R., Sukert, A., "RADC Software Data Acquisition Program". RADC
Paper presented at Fault Tolerant System Workshop, Research Triangle
Institute, November 1975.

NODA75 "NODAL - Automated Verification System", Aerospace TOR-0075(5112)-I, 1975.

OGDIJ72 Ogdin, J.L., "Designing Aeliable Software", Datamation, July 1972.

OSTEL74 Osterweil, L., et al, "Data Flow Analysis as an Aid in Documentation,
Assertion Generation, and Error Detection", NTIS PB-236-654, September1974.

0STL463 Ostle, B., St4tistics in Research, low& State University Press, 1963.

PADED56 Paden, 0., Linquist, E., Statistics for Economics and Business, McGraw-
Hill, New York, 1966.

Ref-6

PANZD76 Panzl, D., "Test Procedures: A New Approach to Software Verification",
1976 Software Engineering Conference.

PARIR76 Pariseav, R., "Improved Software Productivity for Military Systems
through Structured Programming", NTIS AD-A022 284, March 1976.

PARN972a Parnas, D.L., "A Technique for Software Module Specification with
Examples", Cominunications of the ACM, Vol. 15 No. 5, 1972.

PARND71 Parnas, D.L., "Information Distribution Aspects of Design Methodology",
Proc IFIP Congress 1971.

PARND75 Parnas, D.L., "The Influence of Software Structure on Reliability",
International Conference on Reliable Software, 1975.

PARND72b Parnas, D.L., "On the Criteria to be used in Decomposing Systems ito
Modules", Comm. of the ACM, Vol. 15, No. 12, December 1972.

PATH76 Pathway Program - Product Quality Assurance for Shipboard Installed
Computer Programs, Naval Sea Systems Command, April 1976.

PET72 "PET - Automatic Test Tool", AFIPS Conference Proceedings, Vol. 42, 1972.

PILIM68 Piligian, M.S., et al, "Configuration Management of Computer Program
Contract End Items", ESD-TR-68-107, January 1968.

POOLL77 Poole, L., Borchers, M., Some Common Basic Programs, Adam Osborne and
Associates, Berkeley, 1977.

PROG75 Program Design Study "Structured Programming Series" (Vol. VIII), RADC
TR-74-300, 1975.

RAMAC75 Ramamoorthy, C., Ho, S., "Testing Large Software with Automated Software
Evaluation Systems", 1976 Software Engineering Conference.

REIFD75 Reiter, D.J., "Automated Aids for Reliable Software", International
Conference on Reliable Software, 1975.

REIFD76 Reifer, D., "Toward Specifying Software Properties", IFIP Working
Conference on Modeling of Environmental Systems, Tokyo, Japan,
April 1976.

RICHF74 Richards, F.R., "Computer Software Testing, Reliability Models, and
Quality Assessment", NTIS AD-AO01 260, July 1974.

RICHP74 Richards, P., et al, "Simulation Data Processing Study: Language and
Operating System Selection", GE TIS 74CIS09, June 1974.

RICHP75 Richards, P., Chang, P., "Software Development and Implementation Aids
IR&D Project Final Report for 1974", GE TIS 75CIS01, July 1975.

RICHP76 Richards, P., Chang, P., "Localization of Variables: A Measure of
Complexity", GE TIS 76CIS07, December 1976.

Ref-7

ROSED76 Rosenkrantz, D., "Plan for ROL: A Specification Language Gerer-ting
System", GE Internal Document, March 1975.

RUBER68 Rubey, R.J., Iartwick, R.D., "Quantitative Measurement of Program
Quality", Proceedings of 23rd National Conference, ACM, 1968.

SABI76 Sabin, M.A., "Portability - Same Experiences with FORTRAN", Software-
Practice & Experience, Vol. 6, pp 393-396, 1976.

SACI76 "SAC in Transition", Aviation Week and Space Technology, 10 May 1976.

SACKHI67 Sackman, H., Computers. System Science, and Evolving Society, J. Wiley
& Sons, 1967.

SALIJ77 Salinger, J., "Initial Report on the Feasibility of Developing a Work
Measurement Program for the Data Processing Departwents", Blue Cross/
Blue Shield Internal Paper, January 1977.

SALVA75 Salvador, A., Gordon, J., Capstick, C., "Static Profile of Cobol Programs",
SIGPLAN Notices, August 1975.

SAMS75 "SAMSO Program Management Plan Computer Program Test and Evaluation",
February 1975.

SCHNN72 Schneidewind, N.F., "A Methodology for Software Reliability Prediction
and Qualfty Control", Naval Postgraduate School, NTIS AD-754 377,
November 1972.

SCHNN75 Schneidewind, N.F., "Analysis of Error Processes in Computer Software",
International Conference on Reliable Software, 1975.

SCHOJ76 Schonfelder, J.L., "The Production of Special Function Routines for a
Multi-Machine Library", Software-Practice and Experience, Vol. 6,
pp 71-82, 1976.

SCHOW76 Schoeffel, W., "An Air Force Guide to Software Documentation Requirements",
NTIS AD-A027 051, June 1976.

SHOOM75a Shooman, M.L., Bolskey, M.I., "Software Errors: Types, Distribution, Test
and Correction Times", International Conference on Reliable Software,
1975.

SHOOM75b Shooman, M., "Sunmmry of Technical Progress - Software Modeling Studies",
DRAC Interim Report, September 1975.

SMITR74 Smith, R. ,"Management Data Collection and Reporting - Structured Programing
Series (Vol. IX)" RADC TR-74-300, October 1974.

SOFT75 "Software Engineering Handbook", GE Special Purpose Computer Center,
September 1975.

Ref-8

SPAC76 "GE Space Division Task Force on Software", Engineering and Management
June 28 Report, 1976.

STEWD74 Steward, D.W., "The Analysis of the Structure of Systems", GE TIS
74NED36, June 1974.

SULLJ73 Sullivan, J.E., "Measuring the Complexity of Computer Software", MITRE
Tech Report MTR-2648, June 1973.

SUPP73 "Support of Air Force Automatic Data Processing Requirements through
the 1980's", SADPR-85, July 1973.

SZABS76 Szabo, S., "A Schema for Producing Reliable Software", International
Symposium on Fault Tolerant Computing, Paris, June 1975.

TACT74 "Tactical Digital Systems Documentation Standards", Department of the
Navy, SECNAVINST 3560.1, August 1974.

TALIW71 Taliaferro, W.M., "Modularity: The Key to System Growth Potential",
Software Practices and Experience, July-September 1971.

TEICD76 Teichroew, D., "PSL/PSA A Computer-Aided Technique for Structured
Documentation and Analysis of Information Processing Systems", 1976
Software Engineering Conference.

THAYT76 Thayer, T.A., Hetrick, W.L., Lipow, M., Craig, G.R., "Software Reliability
Study", RADC TR-76-238, August 1976.

THAYT75 Thayer, T.A., "Understanding Software through Empirical Reliability
Analysis", Proceedings, 1975 National Computer Conference.

USAR75 "US Army Integrated Software Research and Development Program", USACSC,
January 1975.

VANDG74 VanderBrug, G.J., "On Structured Programming and Problem-Reduction",
NSF TR-291, January 1974 (MF).

VANTD74 Van Tassel, Dennie, Program Style, Design, Efficiency, Debugging and
Testing, Prentice-Hall, Inc., New Jersey, 1974.

VOLKW58 Volk, W., Applied Statistics for Engineers, McGraw-Hill Book Co., Inc.,
New York, 1958.

WALTG74 Walters, G.F., et al, "Spacecraft On-Board Processor/Software Assessment",
GE TIS 74CIS10, June 1974.

WALTG76 Walters, G.F., "Software Aids Index", GE Internal Working Paper,
December 1976.

WAGOW73 Wagoner, W.L., "The Final Report on a Software Reliability Measurement
Study", Aerospace Report TOR-0074, August 1973.

Ref-9

WEING71 Weinberg, G.M., "The Psychology of Computer Programming", NY, Van
Nostrand Reinhold, 1971.

WHIPL75 Whipple, L., "AFAL Operational Software Concept Development Program',
Briefing given at Software Subpanel, Joint Deputies for Laboratories
Committee, 12 February 1975.

WILLN76 Willuouth, N., "Software Data Collection: Problems of Software Data
Collection", RADC Interim Report, 1976.

WOLVR72 Wolverton, R.W., Schick, G.J., "Assessment of Software Reliability',
TRW Report SS-72-04, September 1972.

JLFW73 Wulf, W.A., "Report of Workshop 3 - Programing Methodology", Proceedings
of a Symposium on the High Cost of Software, September 1973.

Y(XJE75 Yourdon, E., Techniques of Pro ram Structure and Design, Prentice-Hll,
YOURE75Inc., Englewood Cliffs, New Jersey, 1975.

ZAHNC75 Zahn, C., "Structured Control in Programming Languages", SIGPL.AN Notices,
July 1975.

Ref- 10

APPENDIX C

RESULTS OF DEVELOPMENT AND VALIDATION
OF NORMALIZATION FUNCTIONS

This appendix is organized as follows:

For each quality factor:

* Analysis was not performed on certain metrics. These metrics are
identified and reasons why they were not used is given according

to the codes described in Table C-1.

e Regression analysis was performed on certain individual metrics.

A summary of the metric scores and the quality factor ratings

for the quality factor ratings for the subset of modules (System B)

used is given as well as the results of the analysis: predictor

coefficient, standard error of estimate, and correlation coefficient.
The results are plotted on graphs.

* Based on these results, a second subset of modules (from System A)

were plotted on the same graphs as a validation of the normaliza-

tion functions developed in the above step. A summ1ary of the rating

and metric scores for this second subset is given for comparison.
Acceptance or rejection of the normalization function is indicated.

* Based on these results, certain metrics were chosen to be used in

the multiple regression. The results of this analysis are provided.

C-i.

Table C-1i Reasons for No Analysis or Correlation

CODE EXPLANATION

Ri NOT SUFFICIENT VARIATION IN DATA BASE - Very strict

standards or a restriction of the development envi-

ronment may cause a very limited range of metric

scores which would limit statistical significance.

R2 NO HISTORICAL DATA AVAILABLE - It may be impossible

to derive a rating of a quality factor because sup-

porting data was not collected or the system had

not experienced the activity represented by the

quality factor. For example, if a system had not

been moved from one environment to another, there

would be no data to derive a rating of portability.

R3 DATA BASE DOES NOT SUPPORT METRIC DATA COLLECTION -

Data may not be available in the data base which

is required to determine a metric. For example,

programmer notebooks which contained module level

testing information were not available, therefore

many of the instrumentation measures could not be

applied. There was no source available for those

metrics.

R4 SYSTEM LEVEL METRIC - Since only two systems were

used, a larger sample is required.

C-Z

c.J
in

Cy C

z1 u

49-
+J-

44,

0 fa

coJ

U U)

CC-3

C-

4p.

u 4

u.

4. --------A - ----- a

C-4

4.1

en_ __ _ __ _ _

4J w

.0'U -

zc

I--

CA IC!

- 4.'

fa C"

4J W

ITO is

C-6~

4n LV)

0*~ LLI
E

Dc\

0.

S 4-)\~~G cL0: .. 0

4J

-c

U) L

xtI

* * ~ (V LA

I-A

mX

L.

A-mA

Ia

. -4 43

a

0L

IL
LLI UI

CD 0

LUJ

0

CC 0

-U C

LUciU

LU I

I LU
IC! C-

Col 0jLL

z n

eC!

F-A

00

04.

CA

Li Ile

C-10

LL

0 r_
00

LA-

S N

V) 0

LI

LU 0

InI

en c)

C14)

a,

C01

-)

4A C4

06

r,~ Sn3 r.to -

lot 4

ICU

C--
* ~r-~a 41

~ F; P~ N -~ - u4I

L~~~C 9A 0-_ _ _ _ _

.b- I %--

~~~i "A u~ n *s S

C-12-



LaLh

LI!

~0

LU C

zN

LO A

LU -

p- 3-C

.01- 3~



r I0

C

ul P.

C-14-



* 44

U4,

IL

CL

co

.00

- 15



4J1

00

N 9-oil.)

IR P% Is!



*L to0

-g

4-4

uU LU

LU

UU

Uo * 0 I )
ui r-

Ln

L. -

4J4

* 0

o o

ICUU

LA0 0 G

UI dw 9wC~

C-7/)1



4.)

1

41

41

CA

0

4J4

444>,'

#A0

C-1



C3

.0 CD

a.

C-20



0

UJ

0

4--

L -J

0

CA

Ch mj

4C-2



at-t

up9

go-

ow
C-229



AInU I

00

4 Ju

CY

SC. Iim ~o N *4-c

Ili at 0

CA- 0 %I O b-
I- *~ ____co
I.- - -V)

In ~IDLIM

-M 1.. ..

'a- . Il

C~~~~~0 u 1I~O tC

me I' Ch In A 1 G

to. N0 41-
US U C-)

4J Z
C ~

W P! .5 q10 9 Mn rl. G

%to. 0 - -

C-23



I.L

0 -L

0A 0

X !

LJ

C/7

I-L

CRI

C-24



4j4J

0 0-
0U

00

4J

06

LLJ

CL

-L-

C--



I-j

IIL

Kg

I C .

0x

0.** \

wA

Dom

~16

C-26



g4i

13 0 M

LC! 4J

0 LdJ N

. Z.

CD

-it

L46

cn co an %J

* A

C-27



C~

co~ N

C-2-



0 m

'-C

o LI... 00 )

0.L

C,)

e~ W -29

-A, -OWL.mob_



0 S.J

4-

Lij

4J0

Ln

w

w ~

LL

- u)

a!- CN.

C-30



0 LL.

4-i

0

ci i

40

OfI

C-31



4-9-

U; C~ e
x CD

'-4

wp it

u I-

Im3
La~ _ ____ __in

100

* 44j
4A 0LI I "

ccG

C-32



II L 0
I~~~' 4-)_ ____I

.4V) -n 4
C-

)~ o c cm '0 ko q.0 ' ON
VJ4C) OD 1.0 0 r '0 .- Ot

0L L& J. D r)
x4 Co(M 0

V)IJCD LO(3

4-t X\ \ 1 ) '

S-__ __ 0'- 000

CA 0 r_.

o , L.4

w4- X: t o o) 0l 4'.. 004t ~
E 'n *) U

0 S

0)

oi mL, ' L o

CD. mL CV) - r-. ID ' I) .4

0D 4V) 4J~) ' %J r- o

w w

0.0
S- 0 .
w) ON 0 ) ON C%) 10 4' J toJ-10

C -t > U)0% 4' n o 4J 4)
0 u

LA) 4- 4-

-C C_
in 0 0

C_ 4-) 0) C 41 4.) c4- + *- *-
on c 4J) 0C c - 0cC 4-' W

W-a s- to0 0 4D L-a 0
0 0.- O E 4J). W -- 0- 0 44'.

(a0 0) M -> A a) 4- 1-. (V,-I -4-- 1.. 004
(A 0-S) 0) "a ## L4 .-. 4Jt S- 0 - S. -

o1 ) 1/) w C a w w 0 S-),- ( ) (v a S

C-33



-,-

LAL

LOI~

I- C

0l

C-34



L4;

SS

~~0

LflU

U- 
c

m - i

0 C)

~C-3



U-A

LC

0

I-I wL
zU

* ~ N

LL

C)

LA-

00 qD Ln e

* N

c-36-



-

I.--

1A to I

- j N

LA 0

UJ .

-

C~

CD

Gi

o 2

C-3



*1
u1u

LA

l- m

La

I- rv ~ C\I L'

4-
'.0m

- -A +-)~



I I3
VV

.1 U:

Lii L.

CL

L1=

0.
2E

Lii

C-
0 0.

LA.. 9'-

(SC)
V) S.

C-j 39

*~9~. - - - - - - - -



4JJ
.1- -

Im-

0 mC

4J 4

rI.

4.9

00
5-J

U 5U

C1

5-. 0

*z I=

C-40o



_ _ _ _c

C;~ I-

00

o o C% %

4-))
C
0

4.) C

4J

CL %04.
4 go Z C' 0

V 0 1--U r

1. LA

IV0

10 0

4 '-4 _.0

4C.4



GO0

4M

C* cn

is* I- '

4, c

0 gal

-42



I en
____D

0'

LLI-

ce

4J 0

C -co

U) ci l

0 CD3 5

*11

4

CL 0
.0 - A

400

.0 Z

IA

C.) 64 _____ _C-43_



I

i i i

, 4J

. . .&m l

;€1 -



41)

oo F-

*~ CoVO F

.4-

4J

0

1- 4J

o C Ch

o )

0, 4J *-

.4-

3 CB
o In-

cc ZIP

4A 4.

4) L U
c ' _ _

o 4i

IU CC-45



41

CA-

4J1

to oo
dc O -9



CL

4.) M

CC

0

4 41 4-,

41

4-)

0

a-

40'-

4J 0 0 0 4)
C ) c. .0

000
ui2

E aj%
Im0

4.)/ -4



ii

APPENDIX D

METRIC APPLICATION

I!

Each metric will be discussed in this appendix in relation to where it was
applied (its source) and how it was collected. Selected examples will be

given.

The metrics will be covered in the same order as presented in Table 6.2-1.

The legend presented in Table D.1-1 applies to the discussion:

Table D.1-1 Metric Source and Tool Legend

Sources Code

Software System Requirements Specification SRS

Standards and Conventions SC

Documentation Plan DP

Management Plan MP
Preliminary Design Specification PDS

Preliminary Design Review Material PDR

Detailed Design Specifications DDS

Critical Design Review Material CDR

Validation and Acceptance Test Specification VATS

Users Manual/Operators Manual UOM
Interface Control Document ICD

Configuration Management Plan CMP
Data Base Management Plan DBMP
Problem Reports PR

Source Code CODE

Programmers Notebook PNK

Training Material TM

D-1



Table D.1-1 Metric Source and Tool Legend (Cont.)

Tools/Techniques Used* Code

Manual Inspection or Review MAN

Configuration Management System CNS

Requirements Trace Routine RTR

GE/Integrated Software Development System IS)S

GJSUMRY/ATP - Code Auditor GJS

* A brief description is provided in paragraph 8.2

Where manual techniques were used but automated tools have been Identified

that would assist in or are capable of providing the metric data, a code

from Table D.1-2 is provided in parentheses. These are briefly described

and examples given in paragraph 8.3.

Table D.1-2 Other Data Collection Tools

Automated Tools Available Code

Requirements Specification Language/Analyzer PSL

Automated Verification System AVS

Test Procedure Language TPL

Program Design Language/Analyzer PDL

Code Auditor CA

Execution Analyzer EA

Consistency Checker CC

Data Definition Language Processor DDLP

Data Base Optimizer DBO

212

4 Di2



D.lI

REQNTS DESIGN 1IMPLEENTATION
METRIC-

SOURCE TOOL SOURCE TOOL SOURCE TOOL

TR. I Cross reference relating inodults to requirements. I
Meie eqieet traced\ PD5 MM - P05 MAN

t otal frequi remnents )(PaL) 1(PSL)

The TR.l measure was determined by a manual analysis of a matrix provided in

the preliminary design specification document which identifies which routines
satisfy specific software system requirements itemized in the software
system requirements specification.

D-3



D.2

RE..TS DESIGN. IMPLEMENTATIO
METRIC- -

SOURCE TOOL SOURCE TOOL SOURCE TOOL

CP. I COMPLETENESS CHECKLIST:

(1) Unaibi guous references (input, func,.on, SRS NAN DOS MAN CODE MAN
output). (PSL) (PDL) (CA)

(2) All data references defined, computed, or SRS MAN DOS MAN CODE MAN
obtained from an external source. (PSL) (PDL) (CA)

(3) All defined functions used. SRS MAN DDS MAN CODE MAN
(PSI) (POL) (CA)

(4) All referenced functions defined. SRS MAN DOS NAN CODE MAN(PSL) (P0L) (CA)

(5) All conditions and processing defined for SRS NAN DOS ISOS CODE MAN
each decision point. (PSL) (CA)

(6) All defined and referenced calling sequence DOS MAN CODE MAN
parameters agree.

(7) All problem reports resolved. PR (CNS) PR (CHS) PR CHS

(8) Design agrees with requirements. DDS MAN
SRS (PSL)

PCI)
(9) Code agrees with design. DOS (ISDS)

CODE (CA)

Most of the completeness measures (CP.) were 1, i.e., no deficiencies were

detected. This was a function of applying the metrics after delivery. Most

of these measures were applied manually during this effort. The use of a

formal requirements specification language and formal design language would

greatly enhance the automation of the metric data collection for this metric.

Automation is definitely required because manual determination of these

measures during an on-going project would be a difficult effort. An example

of an automated tool used during this effort is the GE/Integrated Software
( Development System (GE/ISDS) (a description is in paragraph 8.2). GE/1SDS

performs analyses on design charts which are prepared via an interactive

graphics system and maintained in machine readable form. An example output

from an analysis of decision points (CP. (5)) is shown in Figure D.2-1.

A tool such as PSL/PSA (CARA) provides the capability to determine such
measires as CP.1 (3) and CP.1 (4). Figure D.2-2 provides an excerpt from

a configuration management report which was used to determine CP.1 (7).

1D-4



- n-- OD

II-

4 -1

00

C..

I-

z0

7-,

LuI
CO4-,

w 0i 7z I -

C-~~~~0 
________ 

.

It.L IL QE _______________t_________

IL-CL 
LA.

(Ui Z

1- LAS

* I

C,, I

-~2 .. WI

BESTAVAILMABLE COPY



BEST AVAILABLE COPY
ii~ At1~

00 I ww: . P :- . -.

Iz I
OA .9

go:-

IdO

*2 a

Vj ~ i2 a: V

IL An '.5

0 .0 f

0 4924

IN 
01c~

I- IS i A t

.0 0 a Al 44 X 4
*,. F

IL GO a
1d~ 111 ' N'C %

In. fmi

::. 0 * &SN Uh. 43.

* lot0' '

D-6



D. 3

1ERCRE MS DESIGN IMPLEMENTATIO

SOURCE TOOL ISOUIRCE TOOL SOURCE TOOL

CS. 1 PROCEDURE CONSISTENCY MEFASURE
(1) -tandard design representation DDS ISOS

#mdules vioiate rule\

(2) Cailing sequence conventions DOS ISDS CODE MAN
I-#modules violate rule\ " (A

(3) Input/output coomientions DS 1505 CODE MAN
I-Imodules violate rule\ (CA)( total # modules)

(4) Error handling cotiventions DDS KN CODE HAN
I-modules v 'iolate rule ID)(A( total # modules/

Enhancements to many of the typical currently utilized code audit routines
could display for easier inspection or enforce conventions relating to
the CS.1 elements identified. During design, GE/ISDS is an example of
automated analysis performed on design charts relating to these con-
ventions. Enhancements to a tool such as ISDS could provide complete
coverage of this metric. Examples are shown in Figure D.3-1.

rt4EC1tjv Yy AN4ALYSIS 
AC II MP

j ~TIIE 2;5

s*W DATE I -MP 77EO:Z:r

4 I .Figure 0.3-1 Automated Consistency Checks During Design

- D-7



D. 4

NEWNS DESGN IPLEMENTATIO
C SOURCE TOOL SOuE -TOOL SOURCE TOOL

CS. 2 OATA CONSISTENCY MEASURE

(1) ttandard data usage represpntation OPS NI-( , modules violate rule\
total 0 modules )

(2) Faming conventions 00$ MAN CODE MAN( 9 modules violate rule (ISDS) (DDLP)
I- a ules (ODLP) CA)

(3) Unit consistency DDS MAN CODE MAN
(. dules violate rule'" total 1 modules )

(4) nststent global definitions DOS MAN CODE MAN
# Wdu.s )l'olat rule DOW (DOLP)
" 1 modules (CA)

(5) Data type consistency DDS NAN CODE MAN

I- d1Les vtolAte rule (CA)'" tota'l f modles

The measures dealing with data consistency (CS.2) pose a very difficult

manual data collection task. The use of an automated tool is necessary both

from a cost to collect and 4n accuracy standpoint. The use of a formal

Program Design Language would enhance the ability to automate the collection

of this data. For this effort, the D#ta Base Managmet Plan, the section

of the Detailed Design Specifications which identified the internal

variahles to be used in 4 routine, and the organization and substantial

commenting of the code aided the manual collection of this metric data.

A current enhancement to the design charts produced during contractual

efforts to include dat# representations will allow automated checking of

C5.2(), as shown in Figure D,4-1.

11-8



0.4 (continued)

L( ZTAB

jFIGc:iNDX-----
1:P1

Figure D.4-1 Data Representation on Flowcharts

The type of problem that should be Identified by CS.2(4), consistent global

definitions, is illustrated by this example:

Routine A

COMMON/VAR/SUM, DEV, ROOT
COMMON/MATRIX/X(15), Y(25)

Routine B.

COMMON/VAR/TOTAL, ROOT, DEV

COI )ON/MATRIX/X(25), Z(15)

I The Data Base Management Plan and adherence to the plan in the design

documents is the key to prevention of these types of errors.

I 9



D.5

NETRC REONTS DESIGN IMPLEMENTATION

SOURCE TOOL SOURCE TOOL SOURCE TOOL

AC. 1 ACCURACY CHECKLIST:
(1) Error analysis performed and budgeted to SRS NAN

module.
(2) A definitive statemlent of requirement for SRS MAN

accuracy of inputs, outputs, processing,
and constants.

(3) Sufficiency of math library. DOS MAN
(EA)

(4) Sufficiency of numerical methods. DOS MAN CODE MAN

(5) Execution outputs within tolerances. CODE N
(EA)

The accuracy checklist measures (AC.l) require a high level analyst familiar
with the mathematical requirwents of the system to manually Inspect and
analyze the documents and described methods. Some assistance can be derived
from analysis of execution or simulation results.

An example presented in [VANTD74] illustrates t :,,sis required for
AC.1(4). Three implementations of the equation;

y - Ax3 + Bx2 + Cx + D

are provided. They are listed in order of increasing efficiency and accuracy.

y - A*X**3 + B*X**2 + C*X + D

y - A*X*X*X + B*X*X + C*X + D

y a D + X*(C + X*(B+A*X))

-:

4T

0-1

$,D I



D .6
REQKTS DESIGN IMPLEMENTATIONMETRIC

SOURCE TOOL SOURCE TOOL SOURCE TOOL

ET. 1 ERROR TOLERANCE CONTROL CHECKLIST:

(1) Any concurrent processing centrally PS MAN CODE MAN
controlled. DDS

(2) Errors should be fixable and processing PDS MAN CODE MAN
continued. DOS

(3) When an error condition is detected, it POS MAN CODE MAN
should be passed up to calling routine. DOS

ET. 2 RECOVERY FROM IMPROPER INPUT DATA CHECKLIST:

(1) A definitive statement of requirement for SRS MAN
error tolerance of input data.

(2) Range of values (reasonableness) for items DOS MAN CODE MAN
specified and checked.

(3) Conflicting requests and illegal combinations DOS MAN CODE MAN
identified and checked.

(4) All innut is checked before processing begins. DOS MAN CODE MAN

(5) Determination that an data is available prior DDS MAN CODE MAN
to processing.

ET. 3 RECOVERY FROM COMPUTATIONAL FAILURES CHECKLIST:
(1) A definitive statement of requirement for SRS MAN

recovery from computational failures.

(2) Loop and multiple transfer index parameters DOS MAN CODE AN
range tested before use.

(3) Subscript checking. DOS MAN CODE MAN

(4) Critical output parameters reasonableness DOS MAN CODE MAN
checked during processing.

ET. 4 RECOVERY FROM HARDWARE FAULTS CHECKLIST:

(1) A definitive statement of requirement for SRS MAN
recovery from hardware faults.

(2) Recovery from hardware faults (e.g., DOS NAN CODE MAN
arithmetic faults, power failure, clock).

ET. 5 RECOVERY FROM DEVICE ERRORS CHECKLIST:

(1) Definitive statement of requirement for SRS MAN
recovery from device errors.

(2) Recovery from device errors. DOS MAN CODE MAN
1I

D-11



IT

D.6 (continued)

All of the measures associated with error tolerance (ET.1 through ET.5) were

manually collected. The major source of information was the description of

the inputs, processing, and limitations in the detailed design specification.

Often, an itemized limitation would contain a phrase such as; "all function

cards must be reinput under an error condition," or, "the permissible values

are," or, "the acceptable range," etc. These phrases identify limitations

on the processing. In order for the system to be error tolerant, it should
"gracefully" handle violations of these limitations. Most of the measure-

ments are oriented toward the identification of failures to provide typical

error tolerant capabilities.

The software system requirement specification was also a valuable source.

In our environment, an Operational Hardware/Software Specification evolves

during the development phase from the System Requirements Specification.

The operational constraints imposed by both hardware and software are de-

scribed. The error tolerant handling of the constraints must be considered.

The manual inspection of the code is considerably easier if there is a good

detail design document and accurate design charts. These documents aid in

identifying the key portions of the code to inspect. Basically input pro-

cessing code should be examined to insure necessary checks occur. Loop

indices and subscript checking, if necessary, is easily checked. The common

example given is:

IVAR - 0

* DO 100 1 - l,N

IVAR a IVAR+l

!* 100 CONTINUE

If N s O, the wrong value of VAR is realized. Instead a check should be

made, such as:

D-12



0.6 (continued)

WVAR =0

IF (N.LE.P)

D0 100 1 =1,N
WVAR z IVAR+1

100 CONTINUE

END IF

D-1



D. 7

REOMTS DESIGN iiPEMENTATION
METRIC- -- - -

SOURCE TOOL SOURCE TOOL SOURCE TOOL

SI. I DESIGN STRUCTU1E MEASURE:

(1) Design organized in top down fashion. PDS MAN CODE MAN
DoS (ISoS) (CA)

(2) No duplicate functions.
(3) Independence of module DOS MAN CODE MAN

- # modules violate rule'" total # modules"

(4) Module processing not dependent on prior DOS MAN CODE MAN
processing.

I- # mdules violate rule\" total # modules I

(5) Each module description includes input, output DOS MAN
processing, limitations. (PDL)

I- #f modules violate rule\to" toI # modules

(6) Each module has single entrance, single exit. DOS ISOS CODE GJS
V-,,et tolate rule)

(7) No global data. DOS MAN CODE MAN
(CA)

The design documentation consists of a preliminary design specification (PDS)

and a detailed design specification (DOS) (see Appendix B for a description).

The detailed design specification is usually organized with an overview and

subsystem descriptions and then descriptions at the program level. The

preliminary design specification and detailed design overview were the major

sources for determining the design structure metric (SI.1), during the

design phase. A hierarchy chart and brief descriptions of the subsystems

and planned modules were used to determine if top down design techniques had

been followed. Several violations were found for S1.1(3), (4), and (6).

Most of these violations were identified by examining the section of the

detailed design specifications which describe the calling sequence. Several

modules had multiple entrances (GE/ISDS flags this attribute from the design

charts). Several modules were dependent on prior processing. The most

common indication of this was "the following data blocks must be set prior

to execution of this module" phrase found in the calling sequence description.

This is a characteristic of a COMPOOL system but is also evident in any

environment where there is considerable (SI.1.(7)) global data.

D-14



D.8
REQNTS DESIGN IMPLEM4ENTATION

NETRC SORCE~OOLSOURCE TOOL SOURCE TO

I I~~5. 2 USE OF STRUCTURE LANGUAGE Oft PREPROCESSOR CD A

Refer to paragraph 7.3.



D.9

Ec A W s ES ,. IPLMEMEnTATIO

SOURCE TOOL SOURCE TOOL SOURCE TOOL

1. 3 COMPLEXITY MEASURE (by module, see par. 6.2.2.6) 0DS SOS COOE GJS

GE/ISDS was utilized to calculate a complexity measure (SI.3) from a special
form of a design chart. This measure could be calculated from machine
readable design charts, a PDL, or from code, however, these enhancements
have not been implemented in ]SDS yet. Instead, data gathered by a code
auditing routine, GJSUMRY, was utilized to calculate a modified version of
Halstead's E measure [HALSM73,HALSM72,LOVET76a]. This measure is based on
the number of operators and operands in a program.

An example of the automated calculation of the ISDS generated complexity
measure is in Figure D.9-1.

IJ

21



- - ------------- w-

w cI

fN 
o

fiMN

SD-1 7



D.10
" REQHTS DESIGN IMPLEMENTATION

METRIC SOURCE TOOL SOURCE TOOL SOUNCE TOOL

SI. 4 MEASURE OF CODING SIIPLICITY (by module)

(1) Module flow top to bottom. CODE MAN

(2) Negative Boolean or complicated compound CODE MAN
Boolean expressions used.(1 # of above
1- # executable statements)

(3) Jumps in and out of loops CODE GJS
F single entra/sinale exit lops)

total 0 loops

(4) Loop index modified CODE MAN
( 2l ni dified)

(5) Module is not self-modifying. CODE MAN

(6) All arguments passed to a module are CODE AN
parametric.

(7) Number of statement labels. CODE MAN
# labels (CA)

1 executable statements)

(8) Unique names for variables. CODE MAN

(9) Single use of variables. CODE MAN

(10) No mixed mode expressions. CODE MAN

(11) Nesting level CODE MAN

(max nesting level) (CA)

(12) Number of branches CODE GJS
# branches

(1- executable statements)

(13) Number of GOTOs CODE G JS
(~ # GOTO statements
1 F executable statements)

(14) No extraneous code exists. CODE MAN
(15) Vart ble mix In a module CODE MAN

internal variables (CA)
toal # variables

(16) Variable density CODE MAN

I # variables (CA)
rexecutable statements)

The code simplicity measurements ($1.4) represent a mix of manual inspection

of the source code and a report of statistics about the source code by a code

audit routine. Several other elements could have been collected automatically

(as indicated) with some minor enhancements to the code audit routine. Most

of these manual measurements, once a routine is established, can be done quite

efficiently. Approximately 1-2 man-hours were spent per routine taking the

manual measurements relating to the source code.

D-18



pi

I

D.lO (continued)

Figure D.lO-l displays examples of output from two code audit routines used.

The annotations describe some of the data collected.

An example of 5I.4(2), complicated BOOLEAN expressions, shown here;

IF #GRLERR EQ V(NOREC) $ I:
BEGIN tBEGIN 3 tt

IF tGDEREQ NQ V(DEL) $

BEGIN ttBEGIN 4 #

IF(tSDACCS EQ V(RANFIX) AND tGDERRF GR tSDMAXN OR

GDTTDT($O$) NQ V(VBLK) AND(tGDERRF NQ 0 OR #GDERRF

NQ 0)) $

BEGIN ttBEGIN 5 $0

iMustrates the complexity it adds to the program. Their use may also compli-

cate the logic as shown by [KERNB74] with this example;

IF (.NOT. FLAG) THEN A=B ELSE XzY;

which is simplified as

IF (FLAG) THEN X=Y ELSE A=B;.

The standards and conventions we established for JOVIAL restrict the use of

the switch construct because it constitutes self-modification. An example

of the complexity self-modifying code adds is given by [YOURE75] with this

COBOL example (ALTER in COBOL is similar to SWITCH in JOVIAL).

ALTER SWITCH1 TO PRCCEED TO SWITCH2

I SWITCHI

"1 GO TO INITIALIZATION-ROUTINE

SWITCH2

. ALTER SWITCH3 TO PROCEED TO SWITCH4

-.19



BESIAVAILABLE COPY

4 11 Ao 4Z I I A

':1 0
L. J

V, r

1.2.
-9 v 41.I

2. Z.

Do2* 

0



m 0D.10 (continued)

[BOEHM73a] provides justification for $1.4(7) with this example:

The label, 5, is unnecessary.

DO 10 I = 1,N

5 X(I) = A(I)+B(I)

10 CONTINUE

SI.4(8), (9), (10) posed the biggest data collection problem. Certainly,

examples such as:

A() stores craft altitude

A(2) stores craft velocity

A(3) stores date of run

and

TOTAL )
SUM all same quantities used in different modules
CUM4

given in [BOEHM73a], and

DIMENSION A(20), B(30)

DO 10 I = 1,50
10 A(I) = J

by [YOUR75) are important to catch. The greatest assistance in applying

these metrics is well commented declarative statements which identify the

attributes of the variables. An example from a module inspected during

this study is shown here:

, i *********************************** ITEMS *******************************

ITEM SEC 0 $ $# SAVED SYS ERR COUNT 0$
ITEM SAVPLK 0 8 $ # SAVE BLOCK NAME

S ITEM SAVFILE I 48 U $ $i SAVE FILE NUMBER #0
ITEM SAVREC I 48 U $ $# SAVE RECORD NUMBER fI#
ITEM OPERANS 0 8 $ OPERATOR RESPONSE
ITEM SZERO 0$ MUST BE ZERO j
ITEM BLEN 0$ i) BLOCK LENGTH -

-D-21



RE0ETS ISSI&I jILEENTAT [ON

METRIC SOURCE TOOL -OiJRCE TOOL SOURCE TOOL

MO. 1 STABILITY MEASURE
expect d odules changed PS NAN)I

totl 0 modules - DS (15)

The stability measure is based on Myer's (MYERG75] stability model. Each

module is categorized according to specific criteria as to its module

strength and module coupling. A matrix is built based on values assigned

the various categorizations and the module interactions within the system.

Taking Into account the various paths by which a change to one module may

effect another module, a second order matrix is calculated. From this second

order matrix, a predictien of the number of modules that can be expected to be

effected if any module is changed is calculated. Since this is a system

level metric, validation was impossible. The value derived for System B,

for example was very high compared to the examples presented by Myers. This

is very logical because in our environment, most data is global to the
system (COMPOOL) and accessed by many routines. Thus any change to the

data or the way the data is manipulated by a routine potentially can effect

a large number of other modules in the system. The significance of the

measure is even if other modules are not effected, considerably more effort

must be expended testing to insure they are not in this type of an environment.

0 :

~D-22



I
D.12

REQM4TS DESIGN IMPLE, NTATION1
METRIC SOURCE TOOL SOURCE TOOL SOURCE TOOL

MO. 2 MODULAR IMPLEMENTATION MEASURE

(1) Hierarchical structure
- violations of hierarchy PD MAN CODE MAN

totaI # modules DDS (1505) (CA)

(2) All modules do not exceed standard module CODE GJS
size (100)
1- 0 modules > I0q).

to5tal I modules J

(3) All modules represent one function DS MAN CODE MAN
(1- modules violate rule)

total # modulesu

(4) Controlling parameters defined by calling DDS MAN CODE MAN
module

I- # modules violate rule)
total # modules J

(5) Input data controlled by calling module DOS PAN CODE MAN

1- 
# modules violate rule)

total 4 modules j

(6) Output data provided to calling module DOS MAN CODE MAN
# modules violate rule

total * modules

(7) Control returned to calling module D0S MAN CODE MAN
I- # modules violate rule)

total # modules J
(8) Modules do not share temporary storage DOS MAN CODE MAN

(CA)

Each of the modular implementation measures except for MO.2(2), were collected

manually during this effort. The detail design specifications identified

module interactions by a called/calling matrix and had a specific section

Iwhich described the calling sequence and parameters for each module. An

evaluation of the parameters and their effect on theprocessing led to the

above measures.

In MO.2(1), any interactions between modules which are not successors or

predecessors on the same branch are considered violations. In Figure D.12-1,

the measure is 3 violations/8 modules = .375. The violations are the inter-

action between modules 1 - 2, between 1 - 5 and 2 - 5, and between 5 - 6.

,-2 3

D-23



MIN

MODULE MODULE MODULE
12 3

MODLEMODULE MODULE
5 67

Figure 0.12-1 Hierarchical Structure Measure Example

D-24



D.13

REQMTS DESIGN IMPLEMENTATION
METRIC

SOURCE TOOL SOURCE TOOL SOURCE TOOL

GE. 1 EXTENT TO WHICH MODULE IS REFERENCED BY OTHER DOS MAN CODE MAN

MODULES ([SOS) (CA)
I comon modules (POL)
total # modules J

This measurement was also easily determined by the same source mentioned

in D.12 and confirmation made by inspection of the code.

The implication of this measure is that modules which interface with a number

of other modules in their current application will probably be easier to

interface or use in another application.

D2

.

0-25



I
0.14

MRRETS DESICGN IMPLEMENTATION

SOURCE TOOL SOURCE TOOL SOURCE TOOL

GE. 2 IMPLEMENTATION FOR GENERALITY CHECKLIST

(1) Input, processing, output functions are not DOS PAN CODE NAN
mized in a single module. (ISOSj (CA)

- modules violate rule
total # modules J

(2) Application and machine-dependent functions CODE MAN
are not mixed in a single module. (CA)

(I _ IM Iviolate rule)otl#moues

(3) Processing not data volume limited. DOS MAN CODE MAN
(1- P ules limted N(EA)

total # modules

(4) Processing not data value limited. DDS NAN CODE MAN
1 modules limited (EA)
total # modules J

(5) All constants should be defined once. CODE MAN
1 modules violate rule (CA)

total # modules J

Since GE.2 is a system level metric, no validation was possible. However,

the characteristics identified by these measures, we feel, are quite

important to the generality of the software produced. (1) and (2) were

determined by a simple identification in the design documents and code

whether the module contained any machine dependent, input, and/or output

code. The more modules involved in machine dependent functions or input

or output, the more effort will be required to use any one module in

another environment or application.

GE.2 (3) and (4) correspond to several error tolerant elements where the intent

of the measures was to determine how well the system handles exception cases.

These measures are related to the fact that there are exception cases. The

more limitations on a module or a system the less generally usable it is. This

includes the case where the algorithm or function and its implementation are

restrictive or the case where poor programming practices have restricted

the general use of the program. An example of the later situation is if

the limit of a loop in a module which represents the maximum number of inputs

to that module is "hard-coded", it is more difficult to change the module

correctly to handle more input.

0-26



D.14 (continued)

00 10 1 *1,25
SLIM -sum + X(I

10 CONTINUE

A better implementation from a generality viewpoint would be to make the
limit flexible with respect to the numiber of inputs.

DU 10 1 = l,N

SLIM - sum + X(I

10 CONTINUE

D-27



D. 15
0.15 METexQN S Im JEMENAIO

SOURCE TOOL SOW TOOL SOUCE TOOL

EX. I DATA STORAGE EXPANSION M.EASURE:

(1) Logical processing Independent of storage 0ds MAN CODE MAN
specfficatton/requfrtments (by medule)

( modules violate rule
total # modules

(2) Percent of memory capacity uncomitted ODE (EA)
&#*ant of meoty uncaoi tted,

total aMunt of available izory)

EX.1(2) requires execution of the code undet typical loading conditions.

Most job execution reports provided by operatihg system software provides

the data to determine this measure.

Examples, from System B and [YOURE75], of using parameters to insure the

processing is independent of the storage specification follow:

FOR N = NENT(TRELOC) $

BEGIN

END

*THIS ALC PROGRAM REQUIRES THREE TABLES: THE SIZE OF
*EACH TABLE IS A FUNCTION OF THE PARAMETER

*"SSZE".TO CHANGE THE SIZE OF THE TABLES,

4 *MERELY REDEFINE "SIZE".

SIZE EQU 40

TABLE1 bS CL(SIZE)

':1 TAbLE2 DS CL(2*SIZE)

TABLE3 DS CL(SIZE4+)

0-28

4 I II .. .. I I l II I- I I . .



D. 16
REQMTS DESIGN IMPLEMENTAT[ON

M4ETRIC- - -- -

SOURCE1 TOOL SOURCE TOOL SOURCE TOOL

EX. 2 EXTENSIBILITY MEASURE:
(1) Accuracy, convergence, timing attributes DOS KAN CODE MAN

which control processing are parametric.

I- # modules violate rule
total ;modules J

(2) Modules table driven. DOS MAN CODE MAN

I- # modules not table driven\
total # modules

(3) Percent of speed capacity uncommitted. CODE (EA)

amount of cycle time uncommitted )
total processing time J

The discussion in paragraph D.15 pertains to EX.2(3) also. EX.2(l) and (2)

require an analysis of the design strategy expressed in the design document.

The following example is described in [YOURE75].

C

c THIS IS A SUBROUTINE THAT WILL SEARCH THROUGH ANY

c SINGLE-DIMENSIONED ARRAY TO FIND A SPECIFIED

c ARGUEMENT. THE ARGUEMENTS TO THE SUBROUTINE

c ARE AS FOLLOWS:

c TABLE THE NAME OF THE ARRAY TO BE SEARCHED

C FIRST THE LOWER DIMENSION OF THE ARRAY

c LAST THE UPPER DIMENSION OF THE ARRAY

c ARG THE QUANTITY BEING SEARCHED FOR

c FLAG INDICATES WHETHER OR NOT SEARCH WAS SUCCESSFULF|

SUBROUTINE SEARCH (TABLE, FIRST, LAST, ARG, FLAG)
DIMENSION TABLE (FIRST, LAST)

D-29



D. 17
....... MG. SESI$Mt G IPWPLEMENTATI

METRIC souEc TOOL SO"RCE TOOL. SOURCE TOOL

IN. I NODULE TESTING MEASURE (by module)
(1) Path coverage. MSOS NN CODE (AVS)( paths to be tested PHI ISOS (TP.)

total # paths
()Alinput parameters boundary tested. DO A OE (VS'
(2 Al ersmeter to be boundary tested' DOSNA CD (TP~

aotI #parameters )VATS
IN. 2 INTEGRATION TESTING MEASURE

(1) Module interfaces tested. lC0 MANl CODE (AVS)
# to be tested \ VATS (TPL)(total #' into era Ces )

(2) Performance requirements (timing & storage) SRS MAN CODE (AVS)
coverage. VATS RTR (TPL)(total perf requirementF

IN. 3 SYSTEM TESTING MEASURE
(1) Nodule coverage (for all test scenarios) SRS MAN CODE (AVS)

(Imodules to be testedA VATS (TPL)

4 total # of idles J
(2) Identification of test inputs and outputs in DDS MAN CODE MAN

summary form. VATS

For both system developments used in this study, module testing was docu-

mented in individual programmner's notebooks. The notebooks contain the

following information:

* Date of test
a Brief statement of test objectives

a Brief description of input conditions

eDescription of test results and analysis

The notebooks were not available for the two system developments because of

the timeframe since delivery of the two systems. A review of notebooks of
current software developments revealed that sufficient information is

~ ~1 available to determine the INAI measures. Several automated aids are available
in this area and are discussed in paragraph 8.3. An examp~le of automated

assistance during the design phase is the minimum number of test cases to

D-30



D.17 (continued)

cover all program paths determined by GE/ISDS from design charts of a

) program. An example report is shown in Figure D.17-1.

1 2 Is the next entryof row tau nd coDum, tabl. In a different caot,. ?-YES
1 3 IS the next entryO of rou and coluffil tab'"'- - "I" -". ,n
2 4 Does the lost of the dots tar 0
2 4 base the lost of thOO data for I
3 4 Does the lost OF the data for t.
3 4 Dos -he last of the data for t
4 S D s. the next entry, begins at th. PATHS NOT THEENS

4 5 Ito.. tn, next entryf bgintf at U' RO *50 10 t N f I

5BI: the row, or COluw value Of 0
S 6Ithe row or Cotuw, value of 0, TEST NUttIER I

6 8 Is no dat. given? I IS THlE NEXT ENTRY OfE POW AND COLUMNt TACLE IN A cWY KF-r
6 7 Is no data givenl? 2 DOES THE L.AST OF THE DATA FOR THIS ENTRY 60 PAST TIE PEOLIESTED ?-YES
7 a Is Z out of rang. of :PvS7 4-11DEESflf WIT-TATRVWr1*1Tur-ECYEAY-GUYDW~r~ Ou -E
? 8 Is Z out of range of *PVS? S is THE ROW OR COLUMN VALK' Or EIITRY 'A' NOT A LEGAL VALUE? 7-YES
a 0 REIS*N TO .---

TEST N1JNRP-2

1 IS THE ASTr ENTY 1,711tANtOLJN TABLE INA W TFF RE I U; M:VL12~~~~~ ~~~ DOSTELS RTEDT O HIS ENTRY 00 PAST TH; E EUTE ' 04 " SS THE RAST fAYTNY StOIN C olTEVEY51 O U 6T COLHH 7-H
4 tOES RONEX O R $CLU N ALU E ERY BA OTMO N r LEONL LUE? -NO0

NIs No Data lVIEN7 TO-YES

TEST NUMBER 2

S IS THE NEXT ENTRY OFPRON 0116 COLUMN TARLE IN N IFFEPENT COLU" ?-NO
3DOES THE LAST OF THE OATA FOB TKI~ElUTES 00PS THE REQUESTED 1E

4 DgES THI MeT INTRY "Eat AT THE VEY BOTTOM F ITS COLUIMN' .'YES
SIT THE ROW OR'COLUMN VALUE OF ENTRY 'A' NOT A LiEL YACUIr __ NO
N s IS N DATA GlVENM?U -No
7Is 2 OUT or RANGE OF 'Pt'S? 7-YTES

TEST NAER -4________________
I IS THE NEST ENTRY OP RON AND, COLUMNI TABLE IN A DIFFERENT COLUII -NO
Y' COMl THELS -111 Ttwgy _N5__7tTSfr0~s TiR~ES~tH
4 DOES THE NEXT ENTRY BEGIN AT THE VERY BOTTOM Of ITS COLUMN? '-YEL.

SIS Th SON GOEMIOLUUACW114 ENTRY 'A' NOT A LEGAL VALUE V'FNL

SIS NO DATA *VN

Figure D.17-1 Minimum Test Case Generation by GE/ISDS

VSI.-AVALABLE COP

B-31



The interface control document was a primary source for identifying all of

the data files used as interfaces. They are described in detail in this

document. The validation and acceptance test specification indicated that

testing module interfaces (IN.2(1)) is a primary objective of development
testing. Included with this specification is the development test plan

which covers:

e Statement of function tested

e Modules exercised

a Data base value required

e Inputs

* Expected output

e Analysis of output

e Priority of test

The performance requirements (IN.2(2)) are extracted from the software

requirements specification. They are traced by a routine to insure

compliance. An example output of the routine illustrates several performance

requirements identified relating to a particular specification follows:

D-3
:13

i

I I 1 - I . . . . . . . . .. ..... . . I. . . . . .



Example:

SPECIFICATION TO PERFORMANCE REQUIREMENT TRANSLATION

SPECIFICATION The executive function shall provide the option for

specific parameter status reporting and data base update.

PERFORMANCE EX-40
REQUIREMENTS The executive will provide an operator interaction

option to display the contents of specific para-
meters identified in the data base defined status

table.

EX-41

The executive will provide an operator interaction

option to data base update specific parameters

identified in data base defined status table.

EX-42

The executive will provide an option to display para-

meter status values on the console or printer.

EX-43

The executive will accept and interpret run-ccntrol

data inputs which define specific parameters to be

displayed automatically, ard the interval at which

they are to be displayed.

EX-44

The executive will provide an option to automatically

display specific parameters available for status

reporting.

At the system level (IN.3), the validation and acceptance test plan pro-ii vides a test requirements satisfaction matrix from which IN.3(l) can

be determined.

~D-33

A4



D.18
... ITs DESIGN ]IMPLEENTATIOMlETRIC ~ SOURCE TOOL SOURCE TOOL SOURCE TOOL

SO. 1 QUANTITY OF COMMIENTS (by module) CODE GJS

f of comments (nonblank)\
total iines (nonblank))

SO. 2 EFFECTIVENESS OF COW4ENTS MEASURE
(1) Modules have standard formated prologue CODE MAN

comments which describe: (CA)
- Module name/version number
- Author
-Date
- Purpose
- inputs
- Outputs
-FunCttion
- Assumptions
- Limitations and restrictions
- Accuracy requirements
- Error recovery procedures
- References

1 modules violate ruleI
total mOdules 1

(2) Comments set off from code in uniform manner. CODE MAN
1- * modules violate rule I (CA)

total 1 modules I
(3) All transfers Df control & destinations CODE MAN

commented. (CA)
F modules violate ruleI

total # modules I

(4) All machine dependent code commented. CODE MAN
1- f modules violate rule (CA)

total modules I

(5) All non-standard ROL statements commented. CODE MAN
0. f mdules violate rule% (CA)

total 0 modules 1

(6) Attributes of all declared variables commented. CODE MAN
1- f modules violate rule) (CA)

"total' ' modules I

(7) Comments do not just repeat operation CODE MAN
0- * modules violate rulej (CA)( otal I modules

SD.1 was simply derived from our code audit routine, a sample output of

which is shown in Figure D18-1.

SD,2 measures were all determined manually from the source code listings but

could be collected by an enhanced code audit routine. Some selected examples

from the source code relating to SD.2 measurements are shown in Figure D.18-2.

0-34



IAp a P. 0 0 4 0f on V- 4 f 0 fu r 0 : a

. ,... ; _ _-' ',- c- e .." -*'r 4 ft ft ^"' . ort 4 -:0 d 4 1 0 f

4 ft 0 A A ft 0 f ft f 4m ft IV t w ft ft A t ft ft A

4IL

U I:

%- 0 m g - . -

I 0 a 0n 0 0 0 CD a 0 0 0 0

cc

U to

I I I

1- 8- In, 4 f -n 4 I*) '01*t 41a ft MO lo ft ft a ft ft
2- 0 in on - 4 C4 -" -0 ftIn 4

-0 ! m t . r 0

woo

1 o ; r in i 1
U, I ,; in I in

4a j
:0I 0 0L

M0 0 3 a C 0 D ft t 4 * 0 , 0 a% 09 0 w a 00 9 t ,0

C0 ft IV ft r o a-

D 'a 's w

o C

00 .100

-o.0 a, t en 4 10 0 w 00 a fn 0 - 9y a ft m 01 rl 0

ft 04 W, V. 9 0 dl 0 0 4 f 4 l 0 0 0 0 We 9 o

ft 0 0 0Pi, 0 ft 0 0 a, 0 0 0 0 0

OD 4.c1.r cof
C0 in 0 p mV , - j Z r

4 0 ft f 0 00 4 t 4 - 4 ft 0 0 9 ft ft m

0Z w 0 4o -D 14 m 0 -bp -w %p w. b w a

cic

60. w C) 3-.6it

c t f 0 0 ct 0 00 C. dL 1 f 0 ft -
e J ,0

I D,35

J~ ~ ~ ETAAeAL ftCOP-Y 00w 00f t t0



71 -

I
:1 ~
II: III! i'f
Ii -,a

... 2.;
* Id,

I g~ H w
I-.'

* -'a

Ia, . . . Id'
I-a -

2 IflI'~ E
Id~ -- ~ Yb

~. i -- I ~ *10 M~, S
.. i ~ 5!

I.I
C * * * ~ ~11

~ wI
M. h. I

ii
-- - -

II. I
YbIi. Yb
GD

2.. LL
**..**. GD

*1~

a - I.-
* ~0-l.A

- - U
~ N

w -a I-.
-I ~ 0

2
I- aI MU IL

4 - ~ -

I

~

I £

4
I WI..

illil

0-36



D.19
REQMTS DESIGN IMPLEMENTAT IONMETRIC

SOURCE TOOL SOURCE TOOL SOURCE TOOL

SO. 3 DESCRIPTIVENESS OF IMPLEMENTATION LANGUAGE
MEASURE

(1) High order language used. CODE GJS
( 1-" mdules with direct code)

toa modules
(2) Standard format for organization of modules. CODE MAN

# modules violate rule) (CA)

total # modules I

(3) Variable names (memonic) descriptive of CODE MAN
physical ot functional property represented.
I- I modules violate ru e

total # modules I
(4) Source code logically blocked and indented. CODE MAN

I- t modules violate rule\
total # ules I

(5) One statement per line. CODE GJS
# contiruations + multiple

1- statement lines
total # lines

(6) No language keywords used as names. CODE MAN

(- # modules violate rule% 
(CA)

total # modul'es /J

SD.3(1) and (5) were collected by the code audit routine. The remainder were

determined manually. An example of compliance with SD.3(3) follows:

ITEM SAVBLK H 8 $ tt SAVE BLOCK NAME $#

ITEM SAVFILE I 48 U $ $$ SAVE FILE NUMBER oft

ITEM SAVREC 1 48 U $ SAVE RECORD NUMBER $#

ITEM OPERANS H 8 $ # OPERATOR RESPONSE $$

which are obviously better than variable names such as A001, A002, A003, etc.

But more subtle problems can arise from poor variable names as pointed out

in this example in [KERNB74].

N= K

N K**2
NNN =K**3

WRITE (6,60) N,NN,NNN

D-37

t



p.19 (conutinued)

in this exqmple the typoorephical error in the *Kend line WMIO be 044,v to
m~o and difficult to find because of the noming. A su~ggested aMwing 11che t

is N, I$SQP "CU8E.

Most strtwtvred programming preprocessor* provide the indenttion e 61sie

in 50.3(4) Also, tho paragraphing coqspyts suph #j 00 .. CONTINUE in
F0TRN, 0~IN .. ENI) in ALGOL and JOVIL Mh ~ , N;. OFOIN; ,.END;

*dPOEPIPRE; ... END; in PLI should be takeni adv~to ft rmt ef

descriptiyenes$, Whether p module is implaqpti ihtis tecnqusi

mind or not, is easily diocernlble by inspectlpri of the *ojpr code.



D. 20

" REQMTS DESIGN tIMPLENENTATIONMETRIC- - - -

SOURCE TOOL SOURCE TOOL SOURCE TOOL

EE. 1 PERFORMANCE REQUIREMENTS ALLOCATED TO DESIGN POS RTR
DDS JPSLJos

EE. 2 ITERATIVE PROCESSING EFFICIENCY MEASURE:
(by module)

(1) Non-loop dependent computations kept out of DOS MAN CODE MANloop. (CA)
(op # nonloop deendent statements in loop )

I- total loop statements

(2) Performance optimizing compiler/assembly CODE MAN
language used. GJS

(3) Compound expressions defined -- P. CODE MAN
# compound expression dezined more (CA)(-than once)

# compound expressions
(4) Number of overlays. DOS MAN CODE MAN

/ I (EA)

I * of overlays
(5) Free of bit/byte packing/unpacking in loops. DOS MAN CODE MAN

(CA)

(6) Free of nonfunctional executable code. CODE MAN# nonfunctional executable codel
total executable statements

(7) Decision stateernts efficiently coded. CODE MAN( 1 inefficient decision statements (EA)
total I decision statements

(8) Module linkages. CODE (EA)

(9) OS linkages. CODE (EA)(os linkae im
ex-ection 

time

EE. 3 DATA USAGE EFFICIENCY MEASURE: (by module)

(1) Data grouped for efficient processing. DOS MAN CODE MAN

Om (DO)
(2) Variables initialized when declared. CODE MAN

( # initialized when declared (CA)
total 0 varabei-N i

(3) No mix-mode expressions. CODE MAN
_- m o xpressions (CA)

# eecuabl sttements)
(4) Common choice of units/type. DDS HAN CODE MAN

(1/. occurrences of uncomnon unit operations) (CA)

(5) Data indexed or referenced for efficient DOS MAN CODE MAN
processing. DI SP (DO)

• .. -- - (CA)

D-39

sqI I I I , . .



D.20 (continued)

Paragraph D.17 illustrated how the performance requirements are kept track

of and paragraph )-1 described the SRS requirements satisfaction vs routine

matrix in the preliminary design specification. These sources identify

the performance requirements, and the detailed design specifications reveal

whether they are accommodated (EE.1). For example, estimates of storage
requirements and run times are documented In the design documents. These

estimates which provide a best estimate, as well as a high6 and a low
versus the maximum allowable are based on specific scenarios. The SRS might

specify a certain transaction type must be handled within a certain time
frame. The run time estimates for the series of Modules which process

that transaction type should comply with the requirement.

Six of the measures for EE.2 and EE.3 can be taken from the detailed design
documents. All of the measures can be determined from the source code. Code

audit, execution analysis, and data base analysis all contribute to
measurements for these metrics. The most common violations to the efficiency-

oriented characteristics that these metrics represent were related to EE.2(l)

and (3). Some examples are:

FOR I = l,N

BEGIN

AREA(I) - 2*PI*(I+X)**2

END

The 2*PI is an unnecessary computation within a loop.

As illustrated in [VANTD74] the following:

SIG 'l = SIN(THETA) + SIN(THETA)**2

is much SIGNA2 - SIN(THETA)/3.0

ts much more efficient if implemented as:
N RHO = SIN(THETA)

SIGNAl - RHO+RHO**2

b1D-40 SIQMA2 - RHO/3.0



D.21

REQKTS DESIGN IMPLEMENTATIONMETRIC
SOURCE TOOL SOURCE TOOL SOURCE TOOL

SE. I STORAGE EFFICIENCY MEASURE: (by module)

(1) Storage requirements allocated to design. ODS MAN

(2) Virtual storage facilities used. DDS MAN CODE MAN I
(3) Common data defined only once. COE MAN

1 variables defined more than once~~total j variables

(4) Program segmentation. DOS KAN CODE (EA)
" (1-maximum segment length ) I

total program length I

(5) Data segmentation. DOS MAN COVE (EA)
ont of unused data

total amount of data
(6) Dynamic memory management utilized. DOS MAN COVE MAN

(7) Data packing used. CODE MAN
(CA)

(8) Free of nonfunctional code. CODE MAN
I- # norfunctional statements

# statements 

(g) No duplicate codes. CODE MAN CODE MAN
1 # duplicate stotal # stateentsI

(10) Storage optimizing compiler/assembly language CODE MAN
used. GJS

(11) Free of redundant data elements. COVE MAN
1- # redundant data elements

# data elements I

The programming environment for Systems A and B did not provide capabilities

such as virtual storage., optimizing compilers, or dynamic memory management.

However, a very restrictive amount of memory available encouraged many

efficiency techniques to be utilized. These measures attempt to identify

poor practices.

D

D-41



1.22

"IS DEJI(110IULEKITAT!OV

"WREI ToOL SOURE TOOL ISOUCE TOOL I

AC. 1 ACCESS CONTROL CHECKLIST:
Oi *r 1/0 access controls provided SRS MAN PUS MA coot MAN
10D's. passwords). DS

(2) tlk base access control provided SKS VAN PUS MAN CODE MAN4
(authorization tables, privacy locks). DS

(3) Memory protection across tasks provided. SRS MN~ PDS MAN CODE MAN
Dos

AA. I ACCESS AUbIT CHECKLIST:
(1) Provisioni for recording and reportinlg access. SAS Mkh PDS WA CODE MAN

DOS
(2) Provisions for Immediate indication of actets SAS MAN P05 MN CODE MAN

violation, Ds

Neither System A hor B had any specified requirement for access control
capdbilities. Therefore, each bf these measures itere not applicable.
The identified sources would ndhnally contain ttatdiibfts which would

* provide the required data.



D. 23
REOMTS DESIGN IMPLEMENTATION

MET'RIC '- - - - - -SOURCE TOOL SOURCE TOOL SOURCE TOOL

OP. I OPERABILITY CHECKLIST:

(1) All steps of operation described SRS MAN UON MAN UON MAN
(normal and alternative flows).

(2) All error conditions and responses SRS MAN UOM MAN UOM MAN
appropriately described to operator.

(3) Provisions for operator to interrupt, obtain SRS MAN UOM MAN UOM MAN
status, save, modify, and continue processing.

(4) Number of operator actions reasonable. CODE (EA)
0 time for 2eratr actions

St me or job

(5) Job set up and tear down procedures described. UOH MAN

(6) Hard copy log of interactions maintained. UOG MAN U0H MAN

(7) Operator messages consistent and responses UOH MAN UOM MAN
standard.

The user's manual or operator manual (which we call the Computer Programs

Operating Instructions) is the primary source for these measures. Generally

the user's manual evolves during the development phase, becoming more

detailed and precise as more detailed information on the exact operating

procedures becomes available. A separate section contains the daily usage

instructions and another section identifies and explains each error message.

A specific example, paraphrased from the SRS of System B is the following

itemized requirement:

The system should recognize error conditions and automatically

abort in an unrecoverable situation, or in a situation where

recovery is possible, allow operator intervention to either:

0 abort the program

e accept error and continue the program

* correct error and continue the program.

'I

!. D-43



D.24
REIWST DESIGN JMOLIMENTATTO

NE[TRIC SOURCE TOOL SOURCE TOOL SOURCE TOOL

FR. I TRAINING CHECKLIST:

(1) Lesson plins/training material developed for TN NAN
operators, end users, maintainers.

(2) Realistic simulated exercises provided. TN MAN

(3) Sufficient 'help' and diagnostic inforMtion O$ MAN UOM MAN
available on-line. (EA)

Normally a training manual, course material, and lesson plans would be
available to evaluate and provide a measures for this metric. In the

environment of the two systems of this study, personnel quite familiar
with the systems operated them. Thus much less formal documentation

was available. The user's manual had 4 section on training and intro-
ductory information on the systems. These measures are manually

extracted from the identified sources.

An excellent example of compliance with the TR.l(3) measure is found in

the support software, GE/ISOS. At any level of the system, 'HELP' can
be typed, and a list of correct commands at that level is provided the
on-line user.

D-44



D.25
REQMTS DESIGN IMPLEMENTATION

METRIC
SOURCE TOOL SOURCE TOOL SOURCE TOOL

CM. I USER INPUT INTERFACE MEASURE:

(1) Default values defined. DOS MAN 00N MAN
(ta defaults
total # parameters

(2) Input formats uniform. DOS MAN UON MANI

different 1nput record formats)
(3) Each input record self identifyin g. DOS MAN UOM MAN( Ithat are not self identiffinQ

1 iotal i nput records /

(4) Input can be verified by user prior to DOS MAN UOM MAN
execution.

(5) Input terminated by explicitly defined DOS MAN U014 MAN
logical end of input.

(6) Provision for specifying input from SRS MAN DOS MAN UOM MAN
different media.

CM. 2 USER OUTPUT INTERFACE MEASURE:

(1) Selective output controls. SRS MAN DOS NAN UOM MAN

(2) Outputs have unique descriptive user DOS MAN UOt4 MAN
oriented labels.

(3) Outputs have user oriented units. DOS MAN UOM MAN

(4) Uniform Output formats. DOS MAN UOM MAN
(f different output formats)

(5) Logical groups of output separated for user DOS MAN UOM NAN
examination.

(6) Relationship between error messages and DOS MAN UOM MAN
outputs is unambiguous.

(7) Provision for reducing output to different DOS MAN UOM MAN
media.

Manual reviews of the detailed design specifications and users manual

provided the data for all of these measures. Each input/output format was

described in the users manual. The SRS identified the requirements for

different modes of operation (which involved different I/0), from cards,

tape, and teletype, and for output compression and expansion.

D

"' D-45



0.25 (continued)

The selective output controls should include selective debug options in

case the program exhibits unusual behavior. The output labels and units

are almost as valuable to the user as the results themselves. Error messages

should be helpful, for example:

PARAMETER ******* MUST BE BCI

LOGICAL UNIT *** IS NOT VALID

DATA BASE **** WAS NOT FOUND IN THE DISC DIRECTORY

VERB ***** IS NOT LEGAL FOR FUNCTION.

" D-46



D.26
REQTS DESIGN IMPLEMENTATION

METRIC

SOURCE TOOL SOURCE TOOL SOURCE TOOL

SS. 1 SOFTWARE SYSTEM INDEPENDENCE MEASURE:

(1) Dependence on software system utility programs. DOS MAN CODE MAN

0- pro ammUtility program) 
(CA)

(2) Dependence on software system library routines. DOS MAN CODE MAN
I- # librar routines used) (CA)tot-al r-oduses

(3) Common, standard subset of languaae used. DOS MAN CODE MAN

0_ # module violate rule (CA)
- total 0 modules

(4) Free from operating system references. DOS MAN CODE MAN

1- # modules with OS references) (CA)total # modules /

These measures were taken manually from the code and design documents.

Evaluation of the execution or c mpilation of a routine also is helpful.

In a particular environment, automated identification of these measures

would be possible.

0-47

)(.7



0. 27

RE MS DESIGN. IMPLNMENTATION
METRIC- - __ __

SOURCE TOOL SOURCE TOOL SOURCE TOOL

MI. 1 MACHINE INDEPENDENCE MEASURE:

(1) Pro ranvsing language used available on other DDS MAN CODE MAN

(2) Free from input/output references. DOS MAN CODE MANI
0 modules wihIOreferences~ (CA)

total 4 mdules/

(3) Code is independent of word and character slze CODE MAN
1- modules violate rulej( - total # modules I

(4) Data representation machine independent. CODE 11AN
I- modules violate rule)( total 0 modules

Specific JOVIAL constructs such as BIT/BYTE, the I/0 system routines,

and DIRECT code were keyed on while searching the code to determine these

measures.

D-48



D.28
REQMTS DESIGN IMPLEMENTATION

SOURCE TOOL SOURCE TOOL SOURCE TOOL

CC. 1 COMMUNICATIONS COMMONALITY CHECKLIST:

(1) Definitive statement of requirement for SRS MAN
coin-rnlcation with other systems.

(2) Proticol standards established and followed. ICD MAN CODE MAN
DOS

SC

(3) Single module interface for input. DDS MAN CODE MAN
G# modules used fo-r in-put ) FL)(A

(4) Single module interface for output. DDS MAN CODE MAN

(Vmodules used for output) (PDL) (CA)
L

The interface control document specifically identifies and describes any

interfaces between systems. This is especially important in an associate

contractor environment. The detail design specification and the code

were utilized to identify the routines which contained any I/O operations.

IN

D-49

.4 I



D. 29
METR.. DESIGN " "M fifENTATION1

SOURCE1 TOOL ISOURCE TOOL ISOURCE TOOLI

DC. 1 DATA COMONALITY CHECKLIST:
(1) Definitive stat mnt for standard data SRS M

resentation for communlcation with
otrsyStlms.

(2) Translation standards among representations ICD MAN CODE MAN
established and followed. DOS (CA)SC

(3) Single module to perform each translation. DOS MAN CODE M4NI

(9 modules used t perform translation)

There was no requirements for communication between systems as envisioned by

this metric and therefore data was not collected.

I

Si 9-g

I



D. 30 ___ _ _

MERCREQMTS DESIGN IMPLEMENTATIONII __ _ _SOURCE TOOL SOURCE TOOL SOURCEI TOOL

0.I HALSTEAD'S MEASURE (by module) CODE GJS

"ue enthcacatdmodule en th observed
(lImdlelegh alutdmodule length obse rved

The number of operators and operands were collected by the code audit

routine. A routine was written to calculate the metric based on those

D-51/D-52



MISSION
Of

Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and comnunications
(C3 ) activities, and In the C3 areas of information sciences
and intelligtice. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system tic nology,
ionospheric propagation, solid state sciences, microwave
physics an7 electronic reliability, maintainability and
com.patibility.

Printed by
United States Air Force
Hanscom AFB, Mass. 01731


